Displaying all 6 publications

Abstract:
Sort:
  1. Mohamed Sofian Z, Harun N, Mahat MM, Nor Hashim NA, Jones SA
    Eur J Pharm Biopharm, 2021 Nov;168:53-61.
    PMID: 34455038 DOI: 10.1016/j.ejpb.2021.08.003
    Transiently associating amines with therapeutic agents through the formation of ion-pairs has been established both in vitro and in vivo as an effective means to systemically direct drug delivery to the lung via the polyamine transport system (PTS). However, there remains a need to better understand the structural traits required for effective PTS uptake of drug ion-pairs. This study aimed to use a structurally related series of amine counterions to investigate how they influenced the stability of theophylline ion-pairs and their active uptake in A549 cells. Using ethylamine (mono-amine), ethylenediamine (di-amine), spermidine (tri-amine) and spermine (tetra-amine) as counterions the ion-pair affinity was shown to increase as the number of protonated amine groups in the counterion structure increased. The mono and diamines generated a single hydrogen bond and the weakest ion-pair affinities (pKFTIR: 1.32 ± 0.04 and 1.43 ± 0.02) whereas the polyamines produced two hydrogen bonds and thus the strongest ion-pair affinities (pKFTIR: 1.93 ± 0.05 and 1.96 ± 0.04). In A549 cells depleted of endogenous polyamines using α-difluoromethylornithine (DFMO), the spermine-theophylline uptake was significantly increased (p 
    Matched MeSH terms: Polyamines/metabolism*
  2. Greenwood MP, Greenwood M, Paton JF, Murphy D
    Endocrinology, 2015 Aug;156(8):2905-17.
    PMID: 25961839 DOI: 10.1210/en.2015-1074
    The polyamines spermidine and spermine are small cations present in all living cells. In the brain, these cations are particularly abundant in the neurons of the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus, which synthesize the neuropeptide hormones arginine vasopressin (AVP) and oxytocin. We recently reported increased mRNA expression of antizyme inhibitor 1 (Azin1), an important regulator of polyamine synthesis, in rat SON and PVN as a consequence of 3 days of dehydration. Here we show that AZIN1 protein is highly expressed in both AVP- and oxytocin-positive magnocellular neurons of the SON and PVN together with antizyme 1 (AZ1), ornithine decarboxylase, and polyamines. Azin1 mRNA expression increased in the SON and PVN as a consequence of dehydration, salt loading, and acute hypertonic stress. In organotypic hypothalamic cultures, addition of the irreversible ornithine decarboxylase inhibitor DL-2-(difluoromethyl)-ornithine hydrochloride significantly increased the abundance of heteronuclear AVP but not heteronuclear oxytocin. To identify the function of Azin1 in vivo, lentiviral vectors that either overexpress or knock down Azin1 were stereotaxically delivered into the SON and/or PVN. Azin1 short hairpin RNA delivery resulted in decreased plasma osmolality and had a significant effect on food intake. The expression of AVP mRNA was also significantly increased in the SON by Azin1 short hairpin RNA. In contrast, Azin1 overexpression in the SON decreased AVP mRNA expression. We have therefore identified AZIN1, and hence by inference, polyamines as novel regulators of the expression of the AVP gene.
    Matched MeSH terms: Polyamines/metabolism*
  3. Mazlan M, Hamezah HS, Taridi NM, Jing Y, Liu P, Zhang H, et al.
    Oxid Med Cell Longev, 2017;2017:6019796.
    PMID: 29348790 DOI: 10.1155/2017/6019796
    Accumulating evidence suggests that altered arginine metabolism is involved in the aging and neurodegenerative processes. This study sought to determine the effects of age and vitamin E supplementation in the form of tocotrienol-rich fraction (TRF) on brain arginine metabolism. Male Wistar rats at ages of 3 and 21 months were supplemented with TRF orally for 3 months prior to the dissection of tissue from five brain regions. The tissue concentrations of L-arginine and its nine downstream metabolites were quantified using high-performance liquid chromatography and liquid chromatography tandem mass spectrometry. We found age-related alterations in L-arginine metabolites in the chemical- and region-specific manners. Moreover, TRF supplementation reversed age-associated changes in arginine metabolites in the entorhinal cortex and cerebellum. Multiple regression analysis revealed a number of significant neurochemical-behavioral correlations, indicating the beneficial effects of TRF supplementation on memory and motor function.
    Matched MeSH terms: Polyamines/metabolism*
  4. Munirah Md Noh S, Hamimah Sheikh Abdul Kadir S, Vasudevan S
    Biomolecules, 2019 06 22;9(6).
    PMID: 31234474 DOI: 10.3390/biom9060243
    The anti-fibrotic properties of ranibizumab have been well documented. As an antagonist to vascular endothelial growth factor (VEGF), ranibizumab works by binding and neutralizing all active VEGF-A, thus limiting progressive cell growth and proliferation. Ranibizumab application in ocular diseases has shown remarkable desired effects; however, to date, its antifibrotic mechanism is not well understood. In this study, we identified metabolic changes in ranibizumab-treated human Tenon's fibroblasts (HTFs). Cultured HTFs were treated for 48 h with 0.5 mg/mL of ranibizumab and 0.5 mg/mL control IgG antibody which serves as a negative control. Samples from each group were injected into Agilent 6520 Q-TOF liquid chromatography/mass spectrometer (LC/MS) system to establish the metabolite expression in both ranibizumab treated cells and control group. Data obtained was analyzed using Agilent Mass Hunter Qualitative Analysis software to identify the most regulated metabolite following ranibizumab treatment. At p-value < 0.01 with the cut off value of two-fold change, 31 identified metabolites were found to be significantly upregulated in ranibizumab-treated group, with six of the mostly upregulated having insignificant role in fibroblast cell cycle and wound healing regulations. Meanwhile, 121 identified metabolites that were downregulated, and seven of the mostly downregulated are significantly involved in cell cycle and proliferation. Our findings suggest that ranibizumab abrogates the tissue scarring and wound healing process by regulating the expression of metabolites associated with fibrotic activity. In particular, we found that vitamin Bs are important in maintaining normal folate cycle, nucleotide synthesis, and homocysteine and spermidine metabolism. This study provides an insight into ranibizumab's mechanism of action in HTFs from the perspective of metabolomics.
    Matched MeSH terms: Polyamines/metabolism*
  5. Ru X, You W, Zhang J, Xu F, Wu Z, Jin P, et al.
    Int J Biol Macromol, 2024 Dec;283(Pt 2):137729.
    PMID: 39551293 DOI: 10.1016/j.ijbiomac.2024.137729
    GABA is able to increase resistance to biotic and abiotic stresses in fresh-cut fruits and vegetables. Therefore, the objective of this research was to explore the potential regulatory mechanisms of γ-aminobutyric acid (GABA) accumulation in fresh-cut stem lettuce following GABA treatment. The evidence showed that exogenous GABA stimulated the GABA shunt by elevating glutamate levels, the activities of GABA transaminase (GABA-T) and glutamate decarboxylase (GAD). Similarly, GABA stimulated polyamine metabolism by increasing the activities of 4-amino aldehyde dehydrogenase (AMADH), polyamine oxidase (PAO) and diamine oxidase (DAO), as well as elevating free polyamines, arginine and ornithine levels. Subsequently, GABA application up-regulated the expression of GABA shunt genes and polyamine metabolism genes. Additionally, GABA treatment resulted in the down-regulation of LsMYB44 and LsWRKY12 expressions. Notably, LsMYB44 bound to MYB binding sites in the LsGAD, LsGABAT1, LsADC1, LsPAO2, LsALDH7B4 promoters and repressed transcription of these genes. The interaction between LsMYB44 and LsWRKY12 was associated with the transcriptional repression of polyamine metabolism and GABA shunt genes by LsMYB44. In conclusion, LsMYB44 and LsWRKY12 downregulated the transcription of key genes of GABA shunt and polyamine metabolism in fresh-cut lettuce. This downregulation, however, was alleviated by the application of GABA, thereby promoting endogenous GABA accumulation.
    Matched MeSH terms: Polyamines/metabolism
  6. Teh HF, Neoh BK, Wong YC, Kwong QB, Ooi TE, Ng TL, et al.
    J Agric Food Chem, 2014 Aug 13;62(32):8143-52.
    PMID: 25032485 DOI: 10.1021/jf500975h
    Oil palm is one of the most productive oil-producing crops and can store up to 90% oil in its fruit mesocarp. Oil palm fruit is a sessile drupe consisting of a fleshy mesocarp from which palm oil is extracted. Biochemical changes in the mesocarp cell walls, polyamines, and hormones at different ripening stages of oil palm fruits were studied, and the relationship between the structural and the biochemical metabolism of oil palm fruits during ripening is discussed. Time-course analysis of the changes in expression of polyamines, hormones, and cell-wall-related genes and metabolites provided insights into the complex processes and interactions involved in fruit development. Overall, a strong reduction in auxin-responsive gene expression was observed from 18 to 22 weeks after pollination. High polyamine concentrations coincided with fruit enlargement during lipid accumulation and latter stages of maturation. The trend of abscisic acid (ABA) concentration was concordant with GA₄ but opposite to the GA₃ profile such that as ABA levels increase the resulting elevated ABA/GA₃ ratio clearly coincides with maturation. Polygalacturonase, expansin, and actin gene expressions were also observed to increase during fruit maturation. The identification of the master regulators of these coordinated processes may allow screening for oil palm variants with altered ripening profiles.
    Matched MeSH terms: Polyamines/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links