Displaying all 2 publications

Abstract:
Sort:
  1. Monajemi H, Daud MN, Mohd Zain S, Wan Abdullah WA
    Biochem. Cell Biol., 2012 Dec;90(6):691-700.
    PMID: 23016605 DOI: 10.1139/o2012-027
    Finding a proper transition structure for the peptide bond formation process can lead one to a better understanding of the role of ribosome in catalyzing this reaction. Using computer simulations, we performed the potential energy surface scan on the ester bond dissociation of P-site aminoacyl-tRNA and the peptide bond formation of P-site and A-site amino acids. The full fragments of initiator tRNA(i)(met) and elongator tRNA(phe) are attached to both cognate and non-cognate amino acids as the P-site substrate. The A-site amino acid for all four calculations is methionine. We used ONIOM calculations to reduce the computational cost. Our study illustrates the reduced rate of peptide bond formation for misacylated tRNA(i)(met) in the absence of ribosomal bases. The misacylated elongator tRNA(phe), however, did not show any difference in its PES compared with that for the phe-tRNA(phe). This demonstrates the structural specification of initiator tRNA(i)(met) for the amino acids side chain.
    Matched MeSH terms: RNA, Transfer, Met/chemistry*
  2. Monajemi H, Omar NY, Daud MN, Zain SM, Abdullah WA
    PMID: 21902474 DOI: 10.1080/15257770.2011.605780
    The proper arrangement of amino acids in a protein determines its proper function, which is vital for the cellular metabolism. This indicates that the process of peptide bond formation requires high fidelity. One of the most important processes for this fidelity is kinetic proofreading. As biochemical experiments suggest that kinetic proofreading plays a major role in ensuring the fidelity of protein synthesis, it is not certain whether or not a misacylated tRNA would be corrected by kinetic proofreading during the peptide bond formation. Using 2-layered ONIOM (QM/MM) computational calculations, we studied the behavior of misacylated tRNAs and compared the results with these for cognate aminoacyl-tRNAs during the process of peptide bond formation to investigate the effect of nonnative amino acids on tRNAs. The difference between the behavior of initiator tRNA(i) (met) compared to the one for the elongator tRNAs indicates that only the initiator tRNA(i) (met) specifies the amino acid side chain.
    Matched MeSH terms: RNA, Transfer, Met/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links