Displaying all 3 publications

Abstract:
Sort:
  1. Hassan H, Abu Bakar S, Halim KN, Idris J, Nordin AJ
    Curr Radiopharm, 2016;9(2):128-36.
    PMID: 26013570
    BACKGROUND AND OBJECTIVE: Prostate cancer continues to be the most prevalent cancer in men in Malaysia. As time progresses, the prospect of PET imaging modality in diagnosis of prostate cancer is promising, with on-going improvement on novel tracers. Among all tracers, 18F-Fluorocholine is reported to be a reputable tracer and reliable diagnostic technique for prostate imaging. Nonetheless, only 18F-Fluorodeoxyglucose (18F-FDG) is available and used in most oncology cases in Malaysia. With a small scale GMP-based radiopharmaceuticals laboratory set-up, initial efforts have been taken to put Malaysia on 18F-Fluorocholine map. This article presents a convenient, efficient and reliable method for quality control analysis of 18F-Fluorocholine. Besides, the aim of this research work is to assist local GMP radiopharmaceuticals laboratories and local authority in Malaysia for quality control analysis of 18F-Fluorocholine guideline.

    METHODS: In this study, prior to synthesis, quality control analysis method for 18F-Fluorocholine was developed and validated, by adapting the equipment set-up used in 18F-Fluorodeoxyglucose (18FFDG) routine production. Quality control on the 18F-Fluorocholine was performed by means of pH, radionuclidic identity, radio-high performance liquid chromatography equipped with ultraviolet, radio- thin layer chromatography, gas chromatography and filter integrity test.

    RESULTS: Post-synthesis; the pH of 18F-Fluorocholine was 6.42 ± 0.04, with half-life of 109.5 minutes (n = 12). The radiochemical purity was consistently higher than 99%, both in radio-high performance liquid chromatography equipped with ultraviolet (r-HPLC; SCX column, 0.25 M NaH2PO4: acetonitrile) and radio-thin layer chromatography method (r-TLC). The calculated relative retention time (RRT) in r-HPLC was 1.02, whereas the retention factor (Rf) in r-TLC was 0.64. Potential impurities from 18F-Fluorocholine synthesis such as ethanol, acetonitrile, dimethylethanolamine and dibromomethane were determined in gas chromatography. Using our parameters, (capillary column: DB-200, 30 m x 0.53 mm x 1 um) and oven temperature of 35°C (isothermal), all compounds were well resolved and eluted within 3 minutes. Level of ethanol and acetonitrile in 18F-Fluorocholine were detected below threshold limit; less than 5 mg/ml and 0.41 mg/ml respectively. Meanwhile, dimethylethanolamine and dibromomethane were undetectable.

    CONCLUSION: A convenient, efficient and reliable quality control analysis work-up procedure for 18FFluorocholine has been established and validated to comply all the release criteria. The convenient method of quality control analysis may provide a guideline to local GMP radiopharmaceutical laboratories to start producing 18F-Fluorocholine as a tracer for prostate cancer imaging.

    Matched MeSH terms: Radiopharmaceuticals/chemical synthesis*
  2. Yeong CH, Cheng MH, Ng KH
    J Zhejiang Univ Sci B, 2014 Oct;15(10):845-63.
    PMID: 25294374 DOI: 10.1631/jzus.B1400131
    The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 ((131)I), phosphorous-32 ((32)P), strontium-90 ((90)Sr), and yttrium-90 ((90)Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies.
    Matched MeSH terms: Radiopharmaceuticals/chemical synthesis
  3. Hassan H, Bakar SA, Halim KN, Idris J, Saad FF, Nordin AJ
    Curr Radiopharm, 2016;9(2):121-7.
    PMID: 26239237
    BACKGROUND AND OBJECTIVE: 18F-Fluorocholine has been suggested as one of the reputable imaging tracers for diagnosis of prostate tumour in Positron Emission Tomography / Computed Tomography (PET/CT) modality. Nevertheless, it has never been synthesised in Malaysia. We acknowledged that the major problem with 18F-Fluorocholine is due to its relatively low radiochemical yield at the end of synthesis (EOS). Therefore, this article presents improved 18FFluorocholine radiochemical yields after carrying out optimisation on azeotropic drying of 18F-Fluorine.

    METHODS: In the previous study, the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine in the reactor was conducted at atmospheric pressure (0 atm) and shorter duration time. In this study, however, the azeotropic drying of non-carried-added (n.c.a) 18FFluorine was made at a high vacuum pressure (- 0.65 to - 0.85 bar) with an additional time of 30 seconds. At the end of the synthesis, the mean radiochemical yield was statistically compared between the two azeotropic drying conditions so as to observe whether the improvement made was significant to the radiochemical yield.

    RESULTS: From the paired sample t-test analysis, the improvement done to the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine was statistically significant (p < 0.05). With the improvement made, the 18F-Fluorcholine radiochemical yield was found to have increase by one fold.

    CONCLUSION: Improved 18F-Fluorocholine radiochemical yields were obtained after the improvement had been done to the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine. It was also observed that improvement made to the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine did not affect the 18F-Fluorocholine quality control analysis.

    Matched MeSH terms: Radiopharmaceuticals/chemical synthesis*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links