One of the factors which influence the spatial resolution of a 2D detector array is the size of the single detector, another the transport of the secondary electrons from the walls into the measuring volume. In this study, the single ion chamber dose response function of an I'mRT MatriXX array was determined by comparison between slit beam dose profiles measured with the array and with EBT2 radiochromic film in a solid water-equivalent phantom at a shallow depth of 0.5cm and at a depth of 5cm beyond the depth dose maximum for a 6 MV photon beam. The dose response functions were obtained using two methods, the best fit method and the deconvolution method. At the shallow depth, a Lorentz function and at 5cm depth a Gaussian function, both with the same FWHM of 7.4mm within limits of uncertainty, were identified as the best suited dose response functions of the 4.5mm diameter single array chamber. These dose response functions were then tested on various dose profiles whose true shape had been determined with EBT2 film and with the IC03 ionization chamber. By convolving these with the Lorentz kernel (at shallow depth) and the Gaussian kernel (at 5cm depth) the signal profiles measured with the I'mRT MatriXX array were closely approximated. Thus, the convolution of TPS-calculated dose profiles with these dose response functions can minimize the differences between calculation and measurement which occur due to the limited spatial resolution of the I'mRT MatriXX detector.
The advancement of digital imaging has prompted more medical institutions to go filmless. The computed radiography (CR) system is becoming an important tool not only in diagnostic imaging, but also in radiation oncology. A new CR system that was specially designed for the use in radiation oncology, Fuji IP cassette type PII has been introduced to the market in the middle of year 2006. This project aimed to study some basic physical characteristics of this new type of cassette and explore its application for performing quality assurance (QA) tests and portal imaging in radiotherapy. All the images were read by FCR 5000 Plus reader. The image was found to reach its saturation value of 1023 (due to the image was stored in 10 bits data) by depending on the sensitivity value being adjusted. The uniformity test gave the result of 0.12%. The cassette was used to perform the QA tests which were previously performed using film. All the results met the specification as stated in AAPM Task Group 40. The comparison for the portal images of PortalVision contrast-detail phantom showed that the spatial resolution of the images obtained by CR system (Fujifilm Co., Ltd., Tokyo, Japan) were better than the EPID (Varian Medical Systems, Inc., Palo Alto, USA) and film system (Eastman Kodak Co., New York, USA). The IP cassette type PII was found to be suitable as an alternative QA test tool and portal imaging in radiotherapy.