The Malaysian state of Sabah on the Island of Borneo has recently emerged as a global hotspot of nickel hyperaccumulator plants. This study focuses on the tissue-level distribution of nickel and other physiologically relevant elements in hyperaccumulator plants with distinct phylogenetical affinities. The roots, old stems, young stems and leaves of Flacourtia kinabaluensis (Salicaceae), Actephila alanbakeri (Phyllanthaceae), Psychotria sarmentosa (Rubiaceae) and young stems and leaves of Glochidion brunneum (Phyllanthaceae) were studied using nuclear microprobe (micro-PIXE and micro-BS) analysis. The tissue-level distribution of nickel found in these species has the same overall pattern as in most other hyperaccumulator plants studied previously, with substantial enrichment in the epidermal cells and in the phloem. This study also revealed enrichment of potassium in the spongy and palisade mesophyll of the studied species. Calcium, chlorine, manganese and cobalt were found to be enriched in the phloem and also concentrated in the epidermis and cortex of the studied species. Although hyperaccumulation ostensibly evolved numerous times independently, the basic mechanisms inferred from tissue elemental localization are convergent in these tropical woody species from Borneo Island.
The amended diagnosis of the genus Pratylenchoides and list of its valid species with synonyms are given. All the efficient diagnostic characters are listed. Modern taxonomic standard for the description of Pratylenchoides species is proposed; it may be used also in taxonomic databases. Tabular and text keys for all species of the genus are given. Five following groups are considered within the genus Pratylenchoides. The group arenicola differs from other groups in the primitive adanal bursa type; the groups magnicauda, crenicauda, ritteri, and megalobatus differ from each other in the position of cardium along the body axis in relation to the pharyngeal gland nuclei, pharynx types are named according to the stages of its evolution from the primitive tylenchoid pharynx (cardium situated posteriorly) to the advanced hoplolaimoid one (cardium situated anteriorly). Diagnoses and species compositions of the groups are given. Basing on the matrix of species characters, the dendrogram has been generated for all species of Pratylenchoides and for all characters (UPGMA, distance, mean character difference, random, characters ordered). Taking in view that the PAUP software gives equal weights to all characters, including the most important ones which define the prognostic species groups, the separate dendrograms for each prognostic species group were generated using the same above mentioned tree parameters. On the base of the records of Pratylenchoides species the matrices of plant host ranges, geographic distribution, and preferred soil-climatic conditions were developed. The dendrograms of the faunal similarities were generated using these matrices, with conclusions on a possible origin and evolution of the genus. The genus evolved from the flood lands with swampy soils and prevalence of dicotyledons (herbaceous Lamiaceae and woody Salicaceae families) to the forest mainland communities with balanced humidity and predominance of herbaceous Poaceae and Fabaceae with woody Fagaceae, Betulaceae, and Oleaceae. The leading factor of the evolutional adaptation to soil-climatic conditions was the factor of humidity, but its significance gradually decreased with the host change to more advanced plant taxa adapted to the communities with more dry balanced humidity. The genus took its origin on the south shores of Laurasia in the Cainozoe. Later, when Hindistant and Arabian Peninsula joined with Laurasia creating the Himalayas barrier, the Pratylenchoides spp. distributed by two branches: the northern one moved into Central Asia, East Europe and North America, and the south branch came into Indo-Malaya, West Asia and the north of Africa. The remnants of the ancient species groups remain in West Europe and East Asia. In the North America the genus gave an origin to its sister genus Apratylenchoides, which spread to the south up to Antarctica; another advanced branch spread in the North America reaching Alaska.