Cytokines are extremely potent biomolecules that regulate cellular functions and play multiple roles in initiation and inhibition of disease. These highly specialised macromolecules are actively involved in control of cellular proliferation, apoptosis, cell migration and adhesion. This work, investigates the effect of transforming growth factor-beta2 (TGF-β2) on the biological regulation of chondrocyte and the repair of a created model wound on a multilayer culture system. Also the effect of this cytokine on cell length, proliferation, and cell adhesion has been investigated. Chondrocytes isolated from knee joint of rats and cultured at 4 layers. Each layer consisted of 2 × 105 cells/ml with and without TGF-β2. The expression of mRNA and protein levels of TGF-β receptors and Smad1, 3, 4, and 7 have been analysed by RT-PCR and western blot analysis. The effect of different supplementations in chondrocyte cell proliferation, cell length, adhesion, and wound repair was statistically analysed by One-way ANOVA test. Our results showed that the TGFβ2 regulates mRNA levels of its own receptors, and of Smad3 and Smad7. Also the TGF-β2 caused an increase in chondrocyte cell length, but decreased its proliferation rate and the wound healing process. TGF-β2 also decreased cell adhesion ability to the surface of the culture flask. Since, TGF-β2 increased the cell size, but showed negative effect on cell proliferation and adhesion of CHC, the effect of manipulated TGF-β2 with other growth factors and/or proteins needs to be investigated to finalize the utilization of this growth factor and design of scaffolding in treatment of different types of arthritis.
The effects of locally produced chitosan (CPSRT-NC-bicarbonate) in the intervention of keloid pathogenesis were investigated in vitro. A human keratinocyte-fibroblast co-culture model was established to investigate the protein levels of human collagen type-I, III and V in a western blotting analysis, the secreted transforming growth factor-β1 (TGF-β1) in an enzyme-linked immunosorbent assay (ELISA) and the mRNA levels of TGF-β1's intracellular signaling molecules (SMAD2, 3, 4 and 7) in a real-time PCR analysis. Keratinocyte-fibroblast co-cultures were maintained in DKSFM:DMEM:F12 (2:2:1) medium. Collagen type-I was found to be the dominant form in primary normal human dermal fibroblast (pNHDF) co-cultures, whereas collagen type-III was more abundant in primary keloid-derived human dermal fibroblast (pKHDF) co-cultures. Collagen type-V was present as a minor component in the skin. TGF-β1, SMAD2 and SMAD4 were expressed more in the pKHDF than the pNHDF co-cultures. Co-cultures with normal keratinocytes suppressed collagen type-III, SMAD2, SMAD4 and TGF-β1 expressions and CPSRT-NC-bicarbonate enhanced this effect. In conclusion, the CPSRT-NC-bicarbonate in association with normal-derived keratinocytes demonstrated an ability to reduce TGF-β1, SMAD2 and SMAD4 expressions in keloid-derived fibroblast cultures, which may be useful in keloid intervention.