Displaying all 3 publications

Abstract:
Sort:
  1. Shobha KL, Rao PS, Thomas J
    Indian J Med Microbiol, 2005 Jul;23(3):186-8.
    PMID: 16100427
    The objective of this study was to find the prevalence of Staphylococcus spp. carriage among hospital personnel and hospital environment and their antibiogram with special emphasis on methicillin resistance. A total of 205 samples from hospital personnel and environment were collected from casualty, oncology and multidisciplinary cardiac unit ward of Kasturba Medical College Hospital, Manipal. Samples were collected using sterile cotton wool swabs and inoculated into brain heart infusion broth. Subcultures were done onto blood agar and MacConkey's agar. Isolates were identified by standard methods up to species level. Antimicrobial susceptibility test was performed according to standardized disc diffusion Kirby-Bauer method. Each of the isolates was screened for methicillin resistance using oxacillin disc on Mueller Hinton agar plate followed by MIC for methicillin and cefoxitin susceptibility test by disc diffusion method. Sixty five out of 205 strains (31.7%) were Staphylococcus spp. and all of them were coagulase negative. Most of the strains belonged to S.epidermidis 49.23% (32/65) followed by S. saprophyticus 26.15% (17/65). Maximum isolates of S.epidermidis were from anterior nares 28.12% (9/32 strains of S.epidermidis). Highest number of methicillin resistant coagulase negative strains (3/9, 33.33%) were isolated from stethoscope of multidisciplinary cardiac unit ward followed by carriers in the anterior nares (2/9, 22.22%). Methicillin resistant coagulase negative staphylococci are prevalent in anterior nares of hospital personnel and in the hospital environment thereby providing a definite source for hospital acquired infection. All isolates were sensitive to vancomycin, ciprofloxacin and amikacin.
    Matched MeSH terms: Staphylococcus/growth & development
  2. Zaman MZ, Abu Bakar F, Jinap S, Bakar J
    Int J Food Microbiol, 2011 Jan 31;145(1):84-91.
    PMID: 21183239 DOI: 10.1016/j.ijfoodmicro.2010.11.031
    Bacteria with amine oxidase activity have become a particular interest to reduce biogenic amines concentration in food products such as meat and fish sausages. However, little information is available regarding the application of these bacteria in fish sauce. Hence, our study was aimed to investigate the effect of such starter cultures in reducing biogenic amines accumulation during fish sauce fermentation. Staphylococcus carnosus FS19 and Bacillus amyloliquefaciens FS05 isolated from fish sauce which possess amine oxidase activity were used as starter cultures in this study. Fermentation was held for 120 days at 35 °C. The pH value increased in all samples, while salt concentration remained constant throughout fermentation. Aerobic bacteria count was significantly lower (p < 0.05) in the control than in inoculated samples as a result of starter cultures addition. However, it decreased during fermentation due to the growth inhibition by high salt concentration. Proteolytic bacterial count decreased during fermentation with no significant difference (p > 0.05) among samples. These bacteria hydrolyzed protein in anchovy to produce free amino acid precursors for amines formation by decarboxylase bacteria. The presence of biogenic amines producing bacteria in this study was considered to be indigenous from raw material or contamination during fermentation, since our cultures were negative histamine producers. Amino acid histidine, arginine, lysine and tyrosine concentration decreased at different rates during fermentation as they were converted into their respective amines. In general, biogenic amines concentration namely histamine, putrescine, cadaverine and tyramine increased throughout fermentation. However, their concentrations were markedly higher (p < 0.05) in the control (without starter cultures) as compared to the samples treated with starter cultures. Histamine concentration was reduced by 27.7% and 15.4% by Staphylococcus carnosus FS19 and Bacillus amyloliquefaciens FS05, respectively. Both cultures could also reduce other amines during fermentation. After 120 days of fermentation, the overall biogenic amines concentration was 15.9% and 12.5% less in samples inoculated with Staphylococcus carnosus FS19 and Bacillus amyloliquefaciens FS05, respectively, as compared to control samples. These findings emphasized that application of starter cultures with amines oxidase activity in fish sauce fermentation was found to be effective in reducing biogenic amines accumulation.
    Matched MeSH terms: Staphylococcus/growth & development
  3. Aween MM, Hassan Z, Muhialdin BJ, Eljamel YA, Al-Mabrok AS, Lani MN
    J Food Sci, 2012 Jul;77(7):M364-71.
    PMID: 22757710 DOI: 10.1111/j.1750-3841.2012.02776.x
    A total of 32 lactic acid bacteria (LAB) were isolated from 13 honey samples commercially marketed in Malaysia, 6 strains identified as Lactobacillus acidophilus by API CHL50. The isolates had antibacterial activities against multiple antibiotic resistant's Staphylococcus aureus (25 to 32 mm), Staphylococcus epidermis (14 to 22 mm) and Bacillus subtilis (12 to 19 mm) in the agar overlay method after 24 h incubation at 30 °C. The crude supernatant was heat stable at 90 °C and 121 °C for 1 h. Treatment with proteinase K and RNase II maintained the antimicrobial activity of all the supernatants except sample H006-A and H010-G. All the supernatants showed antimicrobial activities against target bacteria at pH 3 and pH 5 but not at pH 6 within 72 h incubation at 30 °C. S. aureus was not inhibited by sample H006-A isolated from Libyan honey and sample H008-D isolated from Malaysian honey at pH 5, compared to supernatants from other L. acidophilus isolates. The presence of different strains of L. acidophilus in honey obtained from different sources may contribute to the differences in the antimicrobial properties of honey.
    Matched MeSH terms: Staphylococcus/growth & development
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links