Displaying all 5 publications

Abstract:
Sort:
  1. Devereaux PJ, Marcucci M, Painter TW, Conen D, Lomivorotov V, Sessler DI, et al.
    N Engl J Med, 2022 May 26;386(21):1986-1997.
    PMID: 35363452 DOI: 10.1056/NEJMoa2201171
    BACKGROUND: Perioperative bleeding is common in patients undergoing noncardiac surgery. Tranexamic acid is an antifibrinolytic drug that may safely decrease such bleeding.

    METHODS: We conducted a trial involving patients undergoing noncardiac surgery. Patients were randomly assigned to receive tranexamic acid (1-g intravenous bolus) or placebo at the start and end of surgery (reported here) and, with the use of a partial factorial design, a hypotension-avoidance or hypertension-avoidance strategy (not reported here). The primary efficacy outcome was life-threatening bleeding, major bleeding, or bleeding into a critical organ (composite bleeding outcome) at 30 days. The primary safety outcome was myocardial injury after noncardiac surgery, nonhemorrhagic stroke, peripheral arterial thrombosis, or symptomatic proximal venous thromboembolism (composite cardiovascular outcome) at 30 days. To establish the noninferiority of tranexamic acid to placebo for the composite cardiovascular outcome, the upper boundary of the one-sided 97.5% confidence interval for the hazard ratio had to be below 1.125, and the one-sided P value had to be less than 0.025.

    RESULTS: A total of 9535 patients underwent randomization. A composite bleeding outcome event occurred in 433 of 4757 patients (9.1%) in the tranexamic acid group and in 561 of 4778 patients (11.7%) in the placebo group (hazard ratio, 0.76; 95% confidence interval [CI], 0.67 to 0.87; absolute difference, -2.6 percentage points; 95% CI, -3.8 to -1.4; two-sided P<0.001 for superiority). A composite cardiovascular outcome event occurred in 649 of 4581 patients (14.2%) in the tranexamic acid group and in 639 of 4601 patients (13.9%) in the placebo group (hazard ratio, 1.02; 95% CI, 0.92 to 1.14; upper boundary of the one-sided 97.5% CI, 1.14; absolute difference, 0.3 percentage points; 95% CI, -1.1 to 1.7; one-sided P = 0.04 for noninferiority).

    CONCLUSIONS: Among patients undergoing noncardiac surgery, the incidence of the composite bleeding outcome was significantly lower with tranexamic acid than with placebo. Although the between-group difference in the composite cardiovascular outcome was small, the noninferiority of tranexamic acid was not established. (Funded by the Canadian Institutes of Health Research and others; POISE-3 ClinicalTrials.gov number, NCT03505723.).

    Matched MeSH terms: Thrombosis/chemically induced
  2. Tan SSN, Koh KT, Tiong LL, Ong TK, Fong AYY
    Pharmacogenomics, 2018 10;19(15):1151-1157.
    PMID: 30191759 DOI: 10.2217/pgs-2018-0082
    AIM: Recurrent thrombotic events still occur despite dual antiplatelet therapy in patient's post percutaneous coronary intervention (PCI) could be attributed to high on-treatment platelet reactivity.

    METHODS: A 44-year-old male, who had staged PCI to left anterior descending (LAD) 2 weeks after an anterior MI, with a drug-coated stent was readmitted with new anterior STEMI 35 days later. Coronary angiogram revealed mid-stent thrombus in situ. He had further uncomplicated PCI. Platelet function testing and genotyping showed clopidogrel high on-treatment platelet reactivity and CYP2C19*3/*17 genotype. Ticagrelor was commenced.

    RESULTS & CONCLUSION: This case study is the first reported in Malaysia to document a patient with a CYP2C19*3/*17 genotype presenting with a stent thrombosis after an uncomplicated index PCI procedure.

    Matched MeSH terms: Thrombosis/chemically induced*
  3. Salamah MF, Ravishankar D, Vaiyapuri R, Moraes LA, Patel K, Perretti M, et al.
    J Thromb Haemost, 2019 Jul;17(7):1120-1133.
    PMID: 31033193 DOI: 10.1111/jth.14466
    Essentials The role of formyl peptide receptor 1 (FPR1) and its ligand, fMLF, in the regulation of platelet function, hemostasis, and thrombosis is largely unknown. Fpr1-deficient mice and selective inhibitors for FPR1 were used to investigate the function of fMLF and FPR1 in platelets. N-formyl-methionyl-leucyl-phenylalanine primes platelet activation and augments thrombus formation, mainly through FPR1 in platelets. Formyl peptide receptor 1 plays a pivotal role in the regulation of platelet function.

    BACKGROUND: Formyl peptide receptors (FPRs) play pivotal roles in the regulation of innate immunity and host defense. The FPRs include three family members: FPR1, FPR2/ALX, and FPR3. The activation of FPR1 by its high-affinity ligand, N-formyl-methionyl-leucyl-phenylalanine (fMLF) (a bacterial chemoattractant peptide), triggers intracellular signaling in immune cells such as neutrophils and exacerbates inflammatory responses to accelerate the clearance of microbial infection. Notably, fMLF has been demonstrated to induce intracellular calcium mobilization and chemotaxis in platelets that are known to play significant roles in the regulation of innate immunity and inflammatory responses. Despite a plethora of research focused on the roles of FPR1 and its ligands such as fMLF on the modulation of immune responses, their impact on the regulation of hemostasis and thrombosis remains unexplored.

    OBJECTIVE: To determine the effects of fMLF on the modulation of platelet reactivity, hemostasis, and thrombus formation.

    METHODS: Selective inhibitors for FPR1 and Fpr1-deficient mice were used to determine the effects of fMLF and FPR1 on platelets using various platelet functional assays.

    RESULTS: N-formyl-methionyl-leucyl-phenylalanine primes platelet activation through inducing distinctive functions and enhances thrombus formation under arterial flow conditions. Moreover, FPR1 regulates normal platelet function as its deficiency in mouse or blockade in human platelets using a pharmacological inhibitor resulted in diminished agonist-induced platelet activation.

    CONCLUSION: Since FPR1 plays critical roles in numerous disease conditions, its influence on the modulation of platelet activation and thrombus formation may provide insights into the mechanisms that control platelet-mediated complications under diverse pathological settings.

    Matched MeSH terms: Thrombosis/chemically induced*
  4. Omar KZ, Ariffin H, Abdullah WA, Chan LL, Lin HP
    Med. Pediatr. Oncol., 2000 May;34(5):377-8.
    PMID: 10797367
    Matched MeSH terms: Thrombosis/chemically induced
  5. Abdullah WZ, Roshan TM, Hussin A, Zain WS, Abdullah D
    Blood Coagul Fibrinolysis, 2013 Dec;24(8):893-5.
    PMID: 24030118 DOI: 10.1097/MBC.0b013e3283642ee2
    Treatment with thalidomide is associated with vascular thrombosis. The effect of thalidomide on platelet activation is unclear, although the use of aspirin is justified for thromboprophylaxis. A study on platelet activation markers was done among multiple myeloma patients receiving thalidomide therapy with warfarin as thromboprophylaxis. Strict criteria and procedure were set to avoid misinterpretation of platelet activation other than due to the thalidomide's effect. Blood specimen pre and post thalidomide therapy were used for flow cytometric analysis. Platelet surface P-selectin, CD62P expression and PAC-1 (antibody that recognizes conformational change of the GPIIb/IIIa complex) were examined by using three-colour flowcytometer. Increased expression marker for PAC-1 was observed after 4 weeks of thalidomide treatment (P 
    Matched MeSH terms: Thrombosis/chemically induced
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links