1. Nine erythrocyte proteins coded by a separate locus each were analysed in and among seven Malayan species of Rattus belonging to three subgenera. 2. Electrophoretic data obtained confirm the specific status of the seven taxa and divide the seven species into three groups which correspond with Ellerman's (1949) subgenera Stenomys, Maxomys and Leopoldamys. 3. A comparative study together with 11 other species of Malayan Rattus previously analysed show that, with few exceptions, the overall relationships among the 18 species based on electrophoretic data correspond well with conclusions based on morphological evidence. 4. Malayan species of Rattus are relatively very diverse genetically (S = 0.27, range 0.01-0.94).
Histochemical demonstration of acid phosphatase activity in microfilariae gives sufficiently characteristic and consistent results for the differentiation of even closely related species. No difference could be detected among nocturnally periodic, nocturnally subperiodic and diurnally subperiodic Brugia malayi, but they could readily be distinguished from B. pahangi. Similarly, Dirofilaria repens could be readily distinguished from D. immitis and B. booliati from B. sergenti. The enzyme distribution pattern of a Malaysian rural strain of Wuchereria bancrofti was different from those of other regions.
Vitamin E has been shown to affect bone metabolism. In this study we determined the effects of palm vitamin E and alpha-tocopherol on bone metabolism. Sprague-Dawley female rats fed with normal rat chow were divided into 4 groups and supplemented with either palm vitamin E 30 mg/kg rat weight, palm vitamin E 60 mg/kg rat weight or alpha-tocopherol 30 mg/kg rat weight. One group was not supplemented. Half of these rats were ovariectomised before supplementation was given for 10 months. As expected, bone mineral density of the ovariectomised rats fed on normal rat chow diet was lower compared to the intact rats. However, these changes were not seen in the supplemented group of rats. Both intact and ovariectomised rats supplemented with palm vitamin E 30 mg/kg rat weight had a lower bone calcium content in both femoral and vertebral bones whilst rats fed palm vitamin E 60 mg/kg rat weight or alpha-tocopherol 30 mg/kg rat weight were able to maintain bone calcium content. Alkaline phosphatase activity was elevated in ovariectomised rats supplemented with palm vitamin E 30 mg/kg rat weight and alpha-tocopherol 30 mg/kg rat weight compared to the intact rats. Alpha-tocopherol also reduced the activity of tartrate-resistant acid phosphatase post-ovariectomy. These findings indicate that both palm vitamin E and alpha-tocopherol maintained bone mineral density in ovariectomised rats but caused conflicting effects on bone calcium content. Further study is needed in order to determine the mechanisms involved.