Keloid is a complex condition with environmental and genetic risk-contributing factors. Two candidate genes, TGFβ1 and SMAD4, located in the same signaling pathway are highly expressed in the keloid fibroblast cells. In a case-control design, TGFβ1 haplotypes showed association with the risk of keloid in the present study. The CC haplotype, composed of both c.29C>T and -509T>C variants, was observed more frequently among cases (Corrected p = 0.037, OR = 2.07, 95 % CI = 0.87-4.93), showing a 4.5-fold increased risk for keloid. The AG genotype of the SMAD4 c.5131A>G variant showed a trend of significance (p = 0.0573, OR = 1.75, 95 % CI = 0.99-3.13). Taken together, either of these variants is most probably causative at the expression level or is in linkage disequilibrium with other causative variants in a complex pattern together with the environmental factors that contribute to the condition. To the best of our knowledge, there is only one documented report on a relationship between TGFβ1 and keloid with no association within the Caucasian population, while there have not been any reports for SMAD4. Therefore, the present study is likely the first research showing a significant association between TGFβ1 variants and keloids in the Malay population.
There is strong evidence of genetic susceptibility in individuals with keloid disorder. The purpose of this cross-sectional study was to determine the clinical relevance of our proposed variables on the multiplicity of keloids by further investigating the presence of other keloids and a family history.
We have recently shown that Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) has a single high-affinity binding site for fibroblast growth factor-2 (FGF-2) and that LTBP-2 blocks FGF-2 induced cell proliferation. Both proteins showed strong co-localisation within keloid skin from a single patient. In the current study, using confocal microscopy, we have investigated the distribution of the two proteins in normal and fibrotic skin samples including normal scar tissue, hypertrophic scars and keloids from multiple patients. Consistently, little staining for either protein was detected in normal adult skin and normal scar samples but extensive co-localisation of the two proteins was observed in multiple examples of hypertrophic scars and keloids. LTBP-2 and FGF-2 were co-localised to fine fibrous elements within the extracellular matrix identified as elastic fibres by immunostaining with anti-fibrillin-1 and anti-elastin antibodies. Furthermore, qPCR analysis of RNA samples from multiple patients confirmed dramatically increased expression of LTBP-2 and FGF-2, similar TGF-beta 1, in hypertrophic scar compared to normal skin and scar tissue. Overall the results suggest that elevated LTBP-2 may bind and sequester FGF-2 on elastic fibres in fibrotic tissues and modulate FGF-2's influence on the repair and healing processes.