Nitrate reductase inhibitor is usually found in the roots of rice plants (Oryza sativa L. cv MR7), but it was also produced in the shoots of aging plants. The inhibitor was inducible in the shoot of rice seedlings by dark, minus-nitrate or plus-ammonium treatments. There appears to be a general involvement of the inhibitor in the control of nitrate assimilation in the plant.
Nitrate simultaneously induced NADH- and NADPH-nitrate reductase activities in rice seedlings. Chloramphenicol, other organic nitro-compounds such as o-nitroaniline and 2,4-dinitrophenol and nitrite also induced nitrate reductase in rice seedlings. The nitrate- or nitrite-induced nitrate reductase could accept electrons more efficiently from NADH than NADPH. However, when this enzyme was induced by organic nitro-compounds, it could accept electrons more efficiently from NADPH than NADH.
Nitrate reduotase is induced by nitrate in excised embryos and germinating intact seedlings of rice (Oryza sativa L.). The enzyme is induced 24 hr after imbibition. The rate of enzyme formation increases with the age of seedlings. There is a lag period of 30 to 40 min between the addition of substrate and the formation of nitrate reductase. Formation of the enzyme is promoted by the presence of ammonium. Chloramphenicol, actinomycin D and cycloheximide effectively inhibit the formation of nitrate reductase.Rice seedlings can assimilate nitrate from the beginning of germination. However, the utilization of nitrate is completely suppressed by the presence of ammonium. As soon as ammonium is depleted from the medium, nitrate utilization is resumed. Ammonium inhibits the first step of nitrate reduction, i.e., NO(-) (3) --> NO(-) (2), but does not inhibit the assimilation of nitrite. This provides an example of feedback inhibition in higher plants.