Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Devereaux PJ, Marcucci M, Painter TW, Conen D, Lomivorotov V, Sessler DI, et al.
    N Engl J Med, 2022 May 26;386(21):1986-1997.
    PMID: 35363452 DOI: 10.1056/NEJMoa2201171
    BACKGROUND: Perioperative bleeding is common in patients undergoing noncardiac surgery. Tranexamic acid is an antifibrinolytic drug that may safely decrease such bleeding.

    METHODS: We conducted a trial involving patients undergoing noncardiac surgery. Patients were randomly assigned to receive tranexamic acid (1-g intravenous bolus) or placebo at the start and end of surgery (reported here) and, with the use of a partial factorial design, a hypotension-avoidance or hypertension-avoidance strategy (not reported here). The primary efficacy outcome was life-threatening bleeding, major bleeding, or bleeding into a critical organ (composite bleeding outcome) at 30 days. The primary safety outcome was myocardial injury after noncardiac surgery, nonhemorrhagic stroke, peripheral arterial thrombosis, or symptomatic proximal venous thromboembolism (composite cardiovascular outcome) at 30 days. To establish the noninferiority of tranexamic acid to placebo for the composite cardiovascular outcome, the upper boundary of the one-sided 97.5% confidence interval for the hazard ratio had to be below 1.125, and the one-sided P value had to be less than 0.025.

    RESULTS: A total of 9535 patients underwent randomization. A composite bleeding outcome event occurred in 433 of 4757 patients (9.1%) in the tranexamic acid group and in 561 of 4778 patients (11.7%) in the placebo group (hazard ratio, 0.76; 95% confidence interval [CI], 0.67 to 0.87; absolute difference, -2.6 percentage points; 95% CI, -3.8 to -1.4; two-sided P<0.001 for superiority). A composite cardiovascular outcome event occurred in 649 of 4581 patients (14.2%) in the tranexamic acid group and in 639 of 4601 patients (13.9%) in the placebo group (hazard ratio, 1.02; 95% CI, 0.92 to 1.14; upper boundary of the one-sided 97.5% CI, 1.14; absolute difference, 0.3 percentage points; 95% CI, -1.1 to 1.7; one-sided P = 0.04 for noninferiority).

    CONCLUSIONS: Among patients undergoing noncardiac surgery, the incidence of the composite bleeding outcome was significantly lower with tranexamic acid than with placebo. Although the between-group difference in the composite cardiovascular outcome was small, the noninferiority of tranexamic acid was not established. (Funded by the Canadian Institutes of Health Research and others; POISE-3 ClinicalTrials.gov number, NCT03505723.).

  2. Marcucci M, Painter TW, Conen D, Lomivorotov V, Sessler DI, Chan MTV, et al.
    Ann Intern Med, 2023 May;176(5):605-614.
    PMID: 37094336 DOI: 10.7326/M22-3157
    BACKGROUND: Among patients having noncardiac surgery, perioperative hemodynamic abnormalities are associated with vascular complications. Uncertainty remains about what intraoperative blood pressure to target and how to manage long-term antihypertensive medications perioperatively.

    OBJECTIVE: To compare the effects of a hypotension-avoidance and a hypertension-avoidance strategy on major vascular complications after noncardiac surgery.

    DESIGN: Partial factorial randomized trial of 2 perioperative blood pressure management strategies (reported here) and tranexamic acid versus placebo. (ClinicalTrials.gov: NCT03505723).

    SETTING: 110 hospitals in 22 countries.

    PATIENTS: 7490 patients having noncardiac surgery who were at risk for vascular complications and were receiving 1 or more long-term antihypertensive medications.

    INTERVENTION: In the hypotension-avoidance strategy group, the intraoperative mean arterial pressure target was 80 mm Hg or greater; before and for 2 days after surgery, renin-angiotensin-aldosterone system inhibitors were withheld and the other long-term antihypertensive medications were administered only for systolic blood pressures 130 mm Hg or greater, following an algorithm. In the hypertension-avoidance strategy group, the intraoperative mean arterial pressure target was 60 mm Hg or greater; all antihypertensive medications were continued before and after surgery.

    MEASUREMENTS: The primary outcome was a composite of vascular death and nonfatal myocardial injury after noncardiac surgery, stroke, and cardiac arrest at 30 days. Outcome adjudicators were masked to treatment assignment.

    RESULTS: The primary outcome occurred in 520 of 3742 patients (13.9%) in the hypotension-avoidance group and in 524 of 3748 patients (14.0%) in the hypertension-avoidance group (hazard ratio, 0.99 [95% CI, 0.88 to 1.12]; P = 0.92). Results were consistent for patients who used 1 or more than 1 antihypertensive medication in the long term.

    LIMITATION: Adherence to the assigned strategies was suboptimal; however, results were consistent across different adherence levels.

    CONCLUSION: In patients having noncardiac surgery, our hypotension-avoidance and hypertension-avoidance strategies resulted in a similar incidence of major vascular complications.

    PRIMARY FUNDING SOURCE: Canadian Institutes of Health Research, National Health and Medical Research Council (Australia), and Research Grant Council of Hong Kong.

  3. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links