The proper slaughter positioning of animals is among the most crucial factors in animal welfare. The lateral position in Halal slaughter is a technique used around the world by Muslims, with a few practicing the upright position. The literature on the effects of slaughter in upright versus lateral positions on pain and stress is scarce. Thus, this study was designed to evaluate the effects of slaughter positions on blood biochemical parameters, plasma catecholamines, and electroencephalographic (EEG) responses. Twenty Brahman crossbred steers were subjected to slaughter in either lateral recumbency (LP) (n = 10) or an upright position (UP) (n = 10). There was a significant increase in adrenaline (p < 0.0001) and noradrenaline (p < 0.05) at T2 compared to T1 in the animals of both groups. A significant difference (p < 0.0001) was observed in the median frequency (MF) and total power (Ptot) of EEG, parameters for pain and stress, between the animals slaughtered in the upright and the lateral position. However, MF and delta waves were significantly higher (p < 0.05) after slaughter in the UP group than in the LP group. The results demonstrate a lesser amount of stress and pain responses among the LP group.
This study was conducted to explore the effect of the zinc oxide nanoparticles (ZnONPs) supplement on the regulatory appetite and heat stress (HS) genes in broiler chickens raised under high or normal ambient temperatures. In this study, 240 one-day-old male broiler chicks (Cobb 500) were randomly assigned to 48 battery cages. From day 1, these 48 cages were randomly subjected to four different treatment strategies: Control (wherein, their basal diet included 60 mg/kg of ZnO), ZNONPs 40 (wherein basal diet included 40 mg/kg of ZnONPs), ZnONPs 60 (basal diet included 60 mg/kg of ZnONPs), and ZnONPs 100 (basal diet included 100 mg/kg of ZnONPs). Thereafter, from day 22 to 42, the chickens from each dietary treatment group were subjected to different temperature stresses either normal (23 ± 1 °C constant) or HS (34 ± 1 °C for 6 h/d), which divided them into eight different treatment groups. Our findings revealed that dietary ZnONPs altered the gene expression of cholecystokinin (ileum), heat stress proteins (HSP) 70 (jejunum and ileum), and HSP 90 (duodenum, jejunum, and ileum). The gene expression of ghrelin was affected by the interaction between the ZnONPs concentration and temperature in the duodenum and stomach. More studies are required to elucidate its complex physiological and biochemical functions of the regulation of gene expression within the intestine in heat-stressed broiler chickens.
The purpose of this work was to evaluate the impacts of feeding different postbiotics on oxidative stress markers, physiological stress indicators, lipid profile and meat quality in heat-stressed broilers. A total of 252 male Cobb 500 (22-day-old) were fed with 1 of 6 diets: A basal diet without any supplementation as negative control (NC); basal diet + 0.02% oxytetracycline served as positive control (PC); basal diet + 0.02% ascorbic acid (AA); or the basal diet diet + 0.3% of RI11, RS5 or UL4 postbiotics. Postbiotics supplementation, especially RI11 increased plasma activity of total-antioxidant capacity (T-AOC), catalase (CAT) and glutathione (GSH), and decreased alpha-1-acid-glycoprotein (α1-AGP) and ceruloplasmin (CPN) compared to NC and PC groups. Meat malondialdehyde (MDA) was lower in the postbiotic groups than the NC, PC and AA groups. Plasma corticosterone, heat shock protein70 (HSP70) and high density lipoprotein (HDL) were not affected by dietary treatments. Postbiotics decreased plasma cholesterol concentration compared to other groups, and plasma triglyceride and very low density lipoprotein (VLDL) compared to the NC group. Postbiotics increased breast meat pH, and decreased shear force and lightness (L*) compared to NC and PC groups. The drip loss, cooking loss and yellowness (b*) were lower in postbiotics groups compared to other groups. In conclusion, postbiotics particularly RI11 could be used as an alternative to antibiotics and natural sources of antioxidants for heat-stressed broilers.
Heat stress negatively affects the productivity of chickens in commercial poultry farms in humid tropics. In this study, the concentrations and types of the antioxidant compounds of eight Chinese herbal medicines, which have previously demonstrated promising effects on suppressing heat stress as a mixture, were investigated using reversed-phase High Performance Liquid Chromatography, spectrophotometry, Liquid Chromatography Mass Spectrometry, and Gas-Liquid Chromatography. Our results provided the levels of phenolic compounds, total amounts of sugars, and total unsaturated fatty acids in the herbal extracts. Apart from the detection and quantification of the active ingredients of herbs that have the potential to mitigate heat stress in poultry, results of this study also provide useful data for developing an efficient and accurate formulation of the herbs' mixtures in order to induce positive effects against heat stress in in vivo studies.
Asia is responsible for ~60% of global egg production. As in most of the world, nearly all of the egg-laying hens are housed in cages. While there is growing demand for cage-free eggs in many regions of the world, challenges have been reported when transitioning to these systems, which may affect the willingness of producers to transition. The aim of this research was to investigate the views of Asian egg producers on the feasibility of cage-free systems and what they perceive to be the main challenges and proposed solutions in adopting cage-free systems. A total of 224 egg producers (165 cage egg producers) completed questionnaires containing a mix of free-form, Likert scale and demographic items. Data were analyzed using thematic qualitative analysis and descriptive quantitative statistics. Responses indicated that cages are primarily used for their efficiency and ease of management. The most common reasons to consider adopting cage-free systems included improved animal welfare, increased market access, and increased product quality. A majority of producers (65%) responded "yes" or "maybe" when asked if they consider cage-free systems to be feasible in their country. Perceived challenges in adopting cage-free systems included reduced profitability, higher costs, and biosecurity and disease. Potential solutions included the development of the cage-free industry and market development. Most producers (72%) said more support is needed to establish cage-free farms, mostly pertaining to technical advice, training and resources. The findings of this study provide an enhanced understanding of the egg industry in these countries and potential areas for producer support in transitioning to cage-free systems.