Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Kadier A, Ilyas RA, Huzaifah MRM, Harihastuti N, Sapuan SM, Harussani MM, et al.
    Polymers (Basel), 2021 Sep 30;13(19).
    PMID: 34641185 DOI: 10.3390/polym13193365
    A novel nanomaterial, bacterial cellulose (BC), has become noteworthy recently due to its better physicochemical properties and biodegradability, which are desirable for various applications. Since cost is a significant limitation in the production of cellulose, current efforts are focused on the use of industrial waste as a cost-effective substrate for the synthesis of BC or microbial cellulose. The utilization of industrial wastes and byproduct streams as fermentation media could improve the cost-competitiveness of BC production. This paper examines the feasibility of using typical wastes generated by industry sectors as sources of nutrients (carbon and nitrogen) for the commercial-scale production of BC. Numerous preliminary findings in the literature data have revealed the potential to yield a high concentration of BC from various industrial wastes. These findings indicated the need to optimize culture conditions, aiming for improved large-scale production of BC from waste streams.
  2. Mohd Basri MS, Mustapha F, Mazlan N, Ishak MR
    Polymers (Basel), 2020 Nov 16;12(11).
    PMID: 33207752 DOI: 10.3390/polym12112709
    As a result of their significant importance and applications in vast areas, including oil and gas, building construction, offshore structures, ships, and bridges, coating materials are regularly exposed to harsh environments which leads to coating delamination. Therefore, optimum interfacial bonding between coating and substrate, and the reason behind excellent adhesion strength is of utmost importance. However, the majority of studies on polymer coatings have used a one-factor-at-a-time (OFAT) approach. The main objective of this study was to implement statistical analysis in optimizing the factors to provide the optimum adhesion strength and to study the microstructure of a rice husk ash (RHA)-based geopolymer composite coating (GCC). Response surface methodology was used to design experiments and perform analyses. RHA/alkali activated (AA) ratio and curing temperature were chosen as factors. Adhesion tests were carried out using an Elcometer and a scanning electron microscope was used to observe the microstructure. Results showed that an optimum adhesion strength of 4.7 MPa could be achieved with the combination of RHA/AA ratio of 0.25 and curing temperature at 75 °C. The microstructure analysis revealed that coating with high adhesion strength had good interfacial bonding with the substrate. This coating had good wetting ability in which the coating penetrated the valleys of the profiles, thus wetting the entire substrate surface. A large portion of dense gel matrix also contributed to the high adhesion strength. Conversely, a large quantity of unreacted or partially reacted particles may result in low adhesion strength.
  3. Mohd Basri MS, Mustapha F, Mazlan N, Ishak MR
    Polymers (Basel), 2021 Oct 29;13(21).
    PMID: 34771303 DOI: 10.3390/polym13213747
    Geopolymer using aluminosilicate sources, such as fly ash, metakaolin and blast furnace slag, possessed excellent fire-retardant properties. However, research on the fire-retardant properties and thermal properties of geopolymer coating using rice husk ash (RHA) is rather limited. Additionally, the approach adopted in past studies on geopolymer coating was the less efficient one-factor-at-a-time (OFAT). A better approach is to employ statistical analysis and a regression coefficient model (mathematical model) in understanding the optimum value and significant effect of factors on fire-retardant and thermal properties of the geopolymer coating. This study aims to elucidate the significance of rice husk ash/activated alkaline solution (RHA/AA) ratio and NaOH concentration on the fire-retardant and thermal properties of RHA-based geopolymer coating, determine the optimum composition and examine the microstructure and element characteristics of the RHA-based geopolymer coating. The factors chosen for this study were the RHA/AA ratio and the NaOH concentration. Rice husk was burnt at a temperature of approximately 600 °C for 24 h to produce RHA. The response surface methodology (RSM) was used to design the experiments and conduct the analyses. Fire-retardant tests and thermal and element characteristics analysis (TGA, XRD, DSC and CTE) were conducted. The microstructure of the geopolymer samples was investigated by using a scanning electron microscope (SEM). The results showed that the RHA/AA ratio had the strongest effect on the temperature at equilibrium (TAE) and time taken to reach 300 °C (TT300). For the optimization process using RSM, the optimum value for TAE and TT300 could be attained when the RHA/AA ratio and NaOH concentration were 0.30 and 6 M, respectively. SEM micrographs of good fire-resistance properties showed a glassy appearance, and the surface coating changed into a dense geopolymer gel covered with thin needles when fired. It showed high insulating capacity and low thermal expansion; it had minimal mismatch with the substrate, and the coating had no evidence of crack formation and had a low dehydration rate. Using RHA as an aluminosilicate source has proven to be a promising alternative. Using it as coating materials can potentially improve fire safety in the construction of residential and commercial buildings.
  4. Amir AL, Ishak MR, Yidris N, Zuhri MYM, Asyraf MRM
    Polymers (Basel), 2021 Apr 20;13(8).
    PMID: 33923921 DOI: 10.3390/polym13081341
    Nowadays, pultruded glass fiber-reinforced polymer composite (PGFRPC) structures have been used widely for cross-arms in high transmission towers. These composite structures have replaced cross-arms of conventional materials like wood due to several factors, such as better strength, superior resistance to environmental degradation, reduced weight, and comparatively cheaper maintenance. However, lately, several performance failures have been found on existing cross-arm members, caused by moisture, temperature changes in the atmosphere, and other environmental factors, which may lead to a complete failure or reduced service life. As a potential solution for this problem, enhancing PGFRPC with honeycomb-filled composite structures will become a possible alternative that can sustain a longer service life compared to that of existing cross-arms. This is due to the new composite structures' superior performance under mechanical duress in providing better stiffness, excellence in flexural characteristics, good energy absorption, and increased load-carrying capacity. Although there has been a lack of previous research done on the enhancement of existing composite cross-arms in applications for high transmission towers, several studies on the enhancement of hollow beams and tubes have been done. This paper provides a state-of-the-art review study on the mechanical efficiency of both PGFRPC structures and honeycomb-filled composite sandwich structures in experimental and analytical terms.
  5. Alsubari S, Zuhri MYM, Sapuan SM, Ishak MR, Ilyas RA, Asyraf MRM
    Polymers (Basel), 2021 Jan 28;13(3).
    PMID: 33525703 DOI: 10.3390/polym13030423
    The interest in using natural fiber reinforced composites is now at its highest. Numerous studies have been conducted due to their positive benefits related to environmental issues. Even though they have limitations for some load requirements, this drawback has been countered through fiber treatment and hybridization. Sandwich structure, on the other hand, is a combination of two or more individual components with different properties, which when joined together can result in better performance. Sandwich structures have been used in a wide range of industrial material applications. They are known to be lightweight and good at absorbing energy, providing superior strength and stiffness-to-weight ratios, and offering opportunities, through design integration, to remove some components from the core element. Today, many industries use composite sandwich structures in a range of components. Through good design of the core structure, one can maximize the strength properties, with a low density. However, the application of natural fiber composites in sandwich structures is still minimal. Therefore, this paper reviewed the possibility of using a natural fiber composite in sandwich structure applications. It addressed the mechanical properties and energy-absorbing characteristics of natural fiber-based sandwich structures tested under various compression loads. The results and potential areas of improvement to fit into a wide range of engineering applications were discussed.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links