OBJECTIVE: This study aims to analyze and evaluate the contents as well as features of COVID-19 mobile apps. The findings are instrumental in helping health care professionals to identify suitable mobile apps for COVID-19 self-monitoring and education. The results of the mobile apps' assessment could potentially help mobile app developers improve or modify their existing mobile app designs to achieve optimal outcomes.
METHODS: The search for the mHealth apps available in the android-based Play Store and the iOS-based App Store was conducted between April 18 and May 5, 2020. The region of the App Store where we performed the search was the United States, and a virtual private network app was used to locate and access COVID-19 mobile apps from all countries on the Google Play Store. The inclusion criteria were apps that are related to COVID-19 with no restriction in language type. The basic features assessment criteria used for comparison were the requirement for free subscription, internet connection, education or advisory content, size of the app, ability to export data, and automated data entry. The functionality of the apps was assessed according to knowledge (information on COVID-19), tracing or mapping of COVID-19 cases, home monitoring surveillance, online consultation with a health authority, and official apps run by health authorities.
RESULTS: Of the 223 COVID-19-related mobile apps, only 30 (19.9%) found in the App Store and 28 (44.4%) in the Play Store matched the inclusion criteria. In the basic features assessment, most App Store (10/30, 33.3%) and Play Store (10/28, 35.7%) apps scored 4 out of 7 points. Meanwhile, the outcome of the functionality assessment for most App Store apps (13/30, 43.3%) was a score of 3 compared to android-based apps (10/28, 35.7%), which scored 2 (out of the maximum 5 points). Evaluation of the basic functions showed that 75.0% (n=36) of the 48 included mobile apps do not require a subscription, 56.3% (n=27) provide symptom advice, and 41.7% (n=20) have educational content. In terms of the specific functions, more than half of the included mobile apps are official mobile apps maintained by a health authority for COVID-19 information provision. Around 37.5% (n=18) and 31.3% (n=15) of the mobile apps have tracing or mapping and home monitoring surveillance functions, respectively, with only 17% (n=8) of the mobile apps equipped with an online consultation function.
CONCLUSIONS: Most iOS-based apps incorporate infographic mapping of COVID-19 cases, while most android-based apps incorporate home monitoring surveillance features instead of providing focused educational content on COVID-19. It is important to evaluate the contents and features of COVID-19 mobile apps to guide users in choosing a suitable mobile app based on their requirements.
Materials and Methods: In this study, six configurations using cold vaccine boxes or bags made with different materials, with and without insulation, of different sizes, and number of coolant-packs were used to simulate the configuration used by the pharmaceutical wholesalers for transportation of vaccine. Model vaccines (vial, n=10) were packed using these six configurations which then stored in an incubator at 38℃ and monitored for 24 hours. Each configuration was tested repeatedly for 5 times.
Results: In term of compliance to 2℃-8℃, four out of six tested configurations are effective in cold chain transportation. The effectiveness is highly dependent on the type of passive containers used, size of cold boxes, insulation, and number of coolant-packs. The configuration with a larger polystyrene foam box with five coolant-packs maintained the required temperature up to 23 hours. In contrast, configurations using a polystyrene foam box with four coolant-packs and a large vaccine cold box with two coolant-packs failed to reach below 8℃ throughout the 24 hours.
Conclusion: Packaging method, the material and size of the container could have a direct impact on the effectiveness of cold chain temperature maintenance. Polystyrene foam box, cold box with polyethylene interior lining and polypropylene insulation, a cooler bag with proper number of ice packs could be effectively used for transportation of vaccines within their respective transportation duration allowance.
OBJECTIVE: The aim of this study was to systematically review studies on the use of blockchain technology in health care and to analyze the characteristics of the studies that have implemented blockchain technology.
METHODS: This study used a systematic review methodology to find literature related to the implementation aspect of blockchain technology in health care. Relevant papers were searched for using PubMed, SpringerLink, IEEE Xplore, Embase, Scopus, and EBSCOhost. A quality assessment of literature was performed on the 22 selected papers by assessing their trustworthiness and relevance.
RESULTS: After full screening, 22 papers were included. A table of evidence was constructed, and the results of the selected papers were interpreted. The results of scoring for measuring the quality of the publications were obtained and interpreted. Out of 22 papers, a total of 3 (14%) high-quality papers, 9 (41%) moderate-quality papers, and 10 (45%) low-quality papers were identified.
CONCLUSIONS: Blockchain technology was found to be useful in real health care environments, including for the management of electronic medical records, biomedical research and education, remote patient monitoring, pharmaceutical supply chains, health insurance claims, health data analytics, and other potential areas. The main reasons for the implementation of blockchain technology in the health care sector were identified as data integrity, access control, data logging, data versioning, and nonrepudiation. The findings could help the scientific community to understand the implementation aspect of blockchain technology. The results from this study help in recognizing the accessibility and use of blockchain technology in the health care sector.