PURPOSE: To investigate the utility of diffusion tensor imaging (DTI) in determining the microstructural integrity of sciatic and peroneal nerves and its correlation with the MRI grading of muscle atrophy severity and clinical function in CMT as determined by the CMT neuropathy score (CMTNS).
STUDY TYPE: Prospective case-control.
SUBJECTS: Nine CMT patients and nine age-matched controls.
FIELD STRENGTH/SEQUENCE: 3 T T1 -weighted in-/out-of phase spoiled gradient recalled echo (SPGR) and DTI sequences.
ASSESSMENT: Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) values for sciatic and peroneal nerves were obtained from DTI. Muscle atrophy was graded according to the Goutallier classification using in-/out-of phase SPGRs. DTI parameters and muscle atrophy grades were compared between CMT and controls, and the relationship between DTI parameters, muscle atrophy grades, and CMTNS were assessed.
STATISTICAL TESTS: The Wilcoxon Signed Ranks test was used to compare DTI parameters between CMT and controls. The relationship between DTI parameters, muscle atrophy grades, and CMTNS were analyzed using the Spearman correlation. Receiver operating characteristic (ROC) analyses of DTI parameters that can differentiate CMT from healthy controls were done.
RESULTS: There was a significant reduction in FA and increase in RD of both nerves (P
METHODS: A 3-step framework was proposed, consisting of: (1) 3D LV model reconstruction from motion-corrected 4D cine-MRI; (2) Registration of 2D LGE-MRI with 4D cine-MRI; (3) LV contour extraction from the intersection of LGE slices with the LV model. The framework was evaluated against cardiac MRI data from 27 patients scanned within 6 months after acute myocardial infarction. We compared the use of local Pearson's correlation (LPC) and normalized mutual information (NMI) as similarity measures for the registration. The use of 2 and 6 long-axis (LA) cine-MRI scans was also compared. The accuracy of the framework was evaluated using manual segmentation, and the interobserver variability of the scar volume derived from the segmented LV was determined using Bland-Altman analysis.
RESULTS: LPC outperformed NMI as a similarity measure for the proposed framework using 6 LA scans, with Hausdorrf distance (HD) of 1.19 ± 0.53 mm versus 1.51 ± 2.01 mm (endocardial) and 1.21 ± 0.48 mm versus 1.46 ± 1.78 mm (epicardial), respectively. Segmentation using 2 LA scans was comparable to 6 LA scans with a HD of 1.23 ± 0.70 mm (endocardial) and 1.25 ± 0.74 mm (epicardial). The framework yielded a lower interobserver variability in scar volumes compared with manual segmentation.
CONCLUSION: The framework showed high accuracy and robustness in delineating LV in LGE-MRI and allowed for bidirectional mapping of information between LGE- and cine-MRI scans, crucial in personalized model studies for treatment planning.
METHODS: Teaching and Learning (T&L) activities were conducted virtually on e-learning platforms. The students' experience and feedback were evaluated after 15 weeks.
RESULTS: We found that while students preferred face-to-face, physical teaching, they were able to adapt to the new norm of e-learning. More than 60% of the students agreed that pre-recorded lectures and viewing videos of practical sessions, plus answering short questions, were beneficial. Certain aspects, such as hands-on practical and clinical experience, could never be replaced. The e-learning and study-from-home environment accorded a lot of flexibility. However, students also found it challenging to focus because of distractions, lack of engagement and mental stress. Technical problems, such as poor Internet connectivity and limited data plans, also compounded the problem.
CONCLUSION: We expect e-learning to prevail in future. Hybrid learning strategies, which includes face-to-face classes and e-learning, will become common, at least in the medical physics programme of the University of Malaya even after the pandemic.
SETTING: A single centre study, Malaysia.
PARTICIPANTS: Adults aged between 18 and 60 years with mTBI as a result of road traffic accident, with no previous history of head trauma, minimum of 9 years education and abnormal cognition at 3 months will be included. The exclusion criteria include pre-existing chronic illness or neurological/psychiatric condition, long-term medication that affects cognitive/psychological status, clinical evidence of substance intoxication at the time of injury and major polytrauma. Based on multiple estimated calculations, the minimum intended sample size is 50 participants (Cohen's d effect size=0.35; alpha level of 0.05; 85% power to detect statistical significance; 40% attrition rate).
INTERVENTIONS: Intervention group will receive individualised structured cognitive rehabilitation. Control group will receive the best patient-centred care for attention disorders. Therapy frequency for both groups will be 1 hour per week for 12 weeks.
OUTCOME MEASURES: Primary: Neuropsychological Assessment Battery-Screening Module (S-NAB) scores. Secondary: Diffusion Tensor Imaging (DTI) parameters and Goal Attainment Scaling score (GAS).
RESULTS: Results will include descriptive statistics of population demographics, CogniPlus cognitive program and metacognitive strategies. The effect of intervention will be the effect size of S-NAB scores and mean GAS T scores. DTI parameters will be compared between groups via repeated measure analysis. Correlation analysis of outcome measures will be calculated using Pearson's correlation coefficient.
CONCLUSION: This is a complex clinical intervention with multiple outcome measures to provide a comprehensive evidence-based treatment model.
ETHICS AND DISSEMINATION: The study protocol was approved by the Medical Research Ethics Committee UMMC (MREC ID NO: 2016928-4293). The findings of the trial will be disseminated through peer-reviewed journals and scientific conferences.
TRIAL REGISTRATION NUMBER: NCT03237676.
PURPOSE: To evaluate the changes of regional wall dynamics in 3D + time domain as remodeling progresses in AS.
STUDY TYPE: Retrospective.
POPULATION: A total of 31 AS patients with reduced and preserved ejection fraction (14 AS_rEF: 7 male, 66.5 [7.8] years old; 17 AS_pEF: 12 male, 67.0 [6.0] years old) and 15 healthy (6 male, 61.0 [7.0] years old).
FIELD STRENGTH/SEQUENCE: 1.5 T Magnetic resonance imaging/steady state free precession and late-gadolinium enhancement sequences.
ASSESSMENT: Individual LV models were reconstructed in 3D + time domain and motion metrics including wall thickening (TI), dyssynchrony index (DI), contraction rate (CR), and relaxation rate (RR) were automatically extracted and associated with the presence of scarring and remodeling.
STATISTICAL TESTS: Shapiro-Wilk: data normality; Kruskal-Wallis: significant difference (P