Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Dang J, Paudel YN, Yang X, Ren Q, Zhang S, Ji X, et al.
    ACS Chem Neurosci, 2021 07 07;12(13):2542-2552.
    PMID: 34128378 DOI: 10.1021/acschemneuro.1c00314
    The lack of disease-modifying therapeutic strategies against epileptic seizures has caused a surge in preclinical research focused on exploring and developing novel therapeutic candidates for epilepsy. Compounds from traditional Chinese medicines (TCMs) have gained much attention for a plethora of neurological diseases, including epilepsy. Herein, for the first time, we evaluated the anticonvulsive effects of schaftoside (SS), a TCM, on pentylenetetrazol (PTZ)-induced epileptic seizures in zebrafish and examined the underlying mechanisms. We observed that SS pretreatments significantly suppressed seizure-like behavior and prolonged the onset of seizures. Zebrafish larvae pretreated with SS demonstrated downregulation of c-fos expression during seizures. PTZ-induced upregulation of apoptotic cells was decreased upon pretreatment with SS. Inflammatory phenomena during seizure progression including the upregulation of interleukin 6 (IL-6), interleukin 1 beta (IL-1β), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were downregulated upon pretreatment with SS. The PTZ-induced recruitment of immunocytes was in turn reduced upon SS pretreatment. Moreover, SS pretreatment modulated oxidative stress, as demonstrated by decreased levels of catalase (CAT) and increased levels of glutathione peroxidase-1a (GPx1a) and manganese superoxide dismutase (Mn-SOD). However, pretreatment with SS modulated the PTZ-induced downregulation of the relative enzyme activity of CAT, GPx, and SOD. Hence, our findings suggest that SS pretreatment ameliorates PTZ-induced seizures, suppresses apoptosis, and downregulates the inflammatory response and oxidative stress, which potentially protect against further seizures in zebrafish.
  2. Li X, Gao D, Paudel YN, Li X, Zheng M, Liu G, et al.
    ACS Chem Neurosci, 2022 Feb 02;13(3):330-339.
    PMID: 35044760 DOI: 10.1021/acschemneuro.1c00656
    Parkinson's disease (PD) is a devastating disease of the central nervous system that occurs mainly in the elderly age group, affecting their quality of life. The PD pathogenesis is not yet fully understood and lacks the disease-modifying treatment strategies. Sanghuangprous vaninii (S. vaninii) is a perennial fungus with a plethora of pharmacological activities including anti-cancer and antioxidant activity and so on. However, no study till date has reported its neuroprotective effect against symptoms that are similar to PD in pre-clinical investigation. In the current study, we investigated anti-PD-like effects of S. vaninii mycelium extracts (SvMEs) on MPTP-induced PD in zebrafish. We observed that the loss of dopaminergic neurons and neurovascular reduction were reversed by using SvMEs in the zebrafish brain in a concentration-independent manner. Moreover, it also relieved locomotor impairments in MPTP-induced PD zebrafish. In addition, SvMEs exerted significant antioxidant activity in vitro, which was also demonstrated in vivo on ktr4:NTR-hKikGR zebrafish. Upon investigating the underlying mechanism, we found that SvMEs may alleviate oxidant stress and accelerate α-synuclein degradation and then alleviate PD-like symptoms. Antioxidant-related genes (sod1, gss, gpx4a, gclm, and cat) implied that the SvMEs exhibited anti-PD activity due to the antioxidation mechanism. Finally, upon analysis of chemical composition of SvMEs by liquid chromatography-mass spectrometry, we identified 10 compounds that are plausibly responsible for the anti-PD-like effect of SvMEs. On the limiting part, the finding of the study would have been more robust had we investigated the protein expression of genes related to PD and oxidative stress and compared the effects of SvMEs with any standard anti-PD therapy. Despite this, our results indicated that SvMEs possess anti-PD effects, indicating SvMEs as a potential candidate that is worth exploring further in this avenue.
  3. Han C, Schmitt J, Gilliland KM
    ACS Chem Neurosci, 2020 Jan 13.
    PMID: 31841631 DOI: 10.1021/acschemneuro.9b00535
    The psychoactive plant kratom is a native plant to Southeast Asia, and its major bioactive alkaloid is mitragynine. Mitragynine exerts its analgesic properties by acting on the opioid receptors. One of its active metabolites, 7-hydroxymytraginine, is found to be 40 times more potent than mitragynine and 10 times more potent than morphine. Interestingly, current research suggests that mitragynine behaves as an atypical opioid agonist, possessing analgesic activity with less severe side effects than those of typical opioids. Although Thailand and Malaysia have criminalized the use, possession, growing, or selling of kratom due to its abuse potential, kratom still remains unregulated in the United States. The U.S. Drug Enforcement Agency (DEA) listed kratom as a "drug of concern" in 2008 with the intent to temporarily place mitragynine and 7-hydroxymitragynine onto Schedule I of the Controlled Substances Act. However, responses from the general public, U.S. Congress, and Kratom Alliances had the DEA retract their intent. Kratom is currently marketed in the United States as a dietary or herbal supplement used to treat chronic pain, anxiety, and depression with over $207 million in annual sales in the United States alone. Here, we will review the traditional and medicinal uses of kratom along with the synthesis of its bioactive ingredients and their pharmacology, metabolism, and structure-activity relationships. The importance in society of this currently controversial substance will also be discussed.
  4. Yong SJ, Veerakumarasivam A, Lim WL, Chew J
    ACS Chem Neurosci, 2023 Mar 30.
    PMID: 36995304 DOI: 10.1021/acschemneuro.2c00679
    Recent advancements in lactoferrin research have uncovered that lactoferrin does function not only as an antimicrobial protein but also as an immunomodulatory, anticancer, and neuroprotective agent. Focusing on neuroprotection, this literature review delineates how lactoferrin interacts in the brain, specifically its neuroprotective effects and mechanisms against Alzheimer's and Parkinson's diseases (AD and PD), the two most common neurodegenerative diseases. The neuroprotective pathways involving surface receptors (heparan sulfate proteoglycan (HSPG) and lactoferrin receptor (LfR)), signaling pathways (extracellular regulated protein kinase-cAMP response element-binding protein (ERK-CREB) and phosphoinositide 3-kinase/Akt (PI3K/Akt)), and effector proteins (A disintegrin and metalloprotease10 (ADAM10) and hypoxia-inducible factor 1α (HIF-1α)) in cortical/hippocampal and dopaminergic neurons are described. These cellular effects of lactoferrin are likely responsible for attenuating cognitive and motor deficits, amyloid-β and α-synuclein accumulation, and neurodegeneration in animal and cellular models of AD and PD. This review also discusses the inconsistent findings related to the neuroprotective effects of lactoferrin against AD. Overall, this review contributes to the existing literature by clarifying the potential neuroprotective effects and mechanisms of lactoferrin in the context of AD and PD neuropathology.
  5. Yeong KY, Berdigaliyev N, Chang Y
    ACS Chem Neurosci, 2020 12 16;11(24):4073-4091.
    PMID: 33280374 DOI: 10.1021/acschemneuro.0c00696
    Sirtuins are class III histone deacetylase (HDAC) enzymes that target both histone and non-histone substrates. They are linked to different brain functions and the regulation of different isoforms of these enzymes is touted to be an emerging therapy for the treatment of neurodegenerative diseases (NDs), including Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). The level of sirtuins affects brain health as many sirtuin-regulated pathways are responsible for the progression of NDs. Certain sirtuins are also implicated in aging, which is a risk factor for many NDs. In addition to SIRT1-3, it has been suggested that the less studied sirtuins (SIRT4-7) also play critical roles in brain health. This review delineates the role of each sirtuin isoform in NDs from a disease centric perspective and provides an up-to-date overview of sirtuin modulators and their potential use as therapeutics in these diseases. Furthermore, the future perspectives for sirtuin modulator development and their therapeutic application in neurodegeneration are outlined in detail, hence providing a research direction for future studies.
  6. Abdelnasir S, Mungroo MR, Shahabuddin S, Siddiqui R, Khan NA, Anwar A
    ACS Chem Neurosci, 2021 Oct 06;12(19):3579-3587.
    PMID: 34545742 DOI: 10.1021/acschemneuro.1c00179
    Free-living amoebae include Acanthamoeba castellanii and Naegleria fowleri that are opportunistic protozoa responsible for life-threatening central nervous system infections with mortality rates over 90%. The rising number of cases and high mortality rates are indicative of the critical unmet need for the development of efficient drugs in order to avert future deaths. In this study, we assess the anti-amoebic capacity of a conducting polymer nanocomposite comprising polyaniline (PANI) and hexagonal boron nitride (hBN) against A. castellanii and N. fowleri. We observed significant amoebicidal and cysticidal effects using 100 μg/mL PANI/hBN (P < 0.05). Further, the nanocomposite demonstrated negligible cytotoxicity toward HaCaT and primary human corneal epithelial cells (pHCECs). In evaluating the mode of inhibition of A. castellanii due to treatment with PANI/hBN, increased intracellular reactive oxygen species (ROS) was measured and scanning microscopy visualized the formation of pores in the amoebae. Overall, this study is suggestive of the potential of the PANI/hBN nanocomposite as a promising therapy for amoeba infections.
  7. Rajendran K, Ahmed U, Meunier AC, Shaikh MF, Siddiqui R, Anwar A
    ACS Chem Neurosci, 2023 Dec 06;14(23):4105-4114.
    PMID: 37983556 DOI: 10.1021/acschemneuro.3c00258
    Naegleria fowleri is one of the free-living amoebae and is a causative agent of a lethal and rare central nervous system infection called primary amoebic meningoencephalitis. Despite the advancement in antimicrobial chemotherapy, the fatality rate in the reported cases is more than 95%. Most of the treatment drugs used against N. fowleri infection are repurposed drugs. Therefore, a large number of compounds have been tested against N. fowleri in vitro, but most of the compounds showed high toxicity. To overcome this, we evaluated the effectiveness of naturally occurring terpene compounds against N. fowleri. In this study, we evaluated the antiamoebic potential of natural compounds including Thymol, Borneol, Andrographolide, and Forskolin againstN. fowleri. Thymol showed the highest amoebicidal activity with IC50/24 h at 153.601 ± 19.6 μM. Two combinations of compounds Forskolin + Thymol and Forskolin + Borneol showed a higher effect on the viability of trophozoites as compared to compounds alone and hence showed a synergistic effect. The IC50 reported for Forskolin + Thymol was 81.30 ± 6.86 μM. Borneol showed maximum cysticidal activity with IC50/24 h at 192.605 ± 3.01 μM. Importantly, lactate dehydrogenase release testing revealed that all compounds displayed minimal cytotoxicity to human HaCaT, HeLa, and SH-SY5Y cell lines. The cytopathogenicity assay showed that Thymol and Borneol also significantly reduced the host cell cytotoxicity of pretreated amoeba toward the human HaCaT cell line. So, these terpene compounds hold potential as therapeutic agents against infections caused by N. fowleri and are potentially a step forward in drug development against this deadly pathogen as these compounds have also been reported to cross the blood-brain barrier. Therefore, an in vivo study using animal models is necessary to assess the efficacy of these compounds and the need for further research into the intranasal route of delivery for the treatment of these life-threatening infections.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links