Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Shee YG, Al-Mansoori MH, Ismail A, Hitam S, Mahdi MA
    Appl Opt, 2010 Jul 10;49(20):3956-9.
    PMID: 20648173 DOI: 10.1364/AO.49.003956
    We demonstrate a simple configuration for generating a double Brillouin frequency shift through the circulation of an odd-order Brillouin Stokes signal. It is operated based on cascaded Brillouin scattering in single-mode optical fibers that behave as the Brillouin gain media. A four-port circulator is incorporated into the setup to circulate the odd-order Brillouin Stokes signal in the fiber. It thus initiates a higher order Brillouin Stokes signal, which is double Brillouin frequency downshifted from the input signal. For the 5 km long fiber, the Brillouin pump power at 23 mW gives a clean output spectrum with 30 dB sideband suppression ratio. The output signal is 0.174 nm or approximately 21.7 GHz downshifted from the input signal.
  2. Shirazi MR, Biglary M, Harun SW, Thambiratnam K, Ahmad H
    Appl Opt, 2008 Jun 10;47(17):3088-91.
    PMID: 18545279
    The effects of backward, forward, and bidirectional Raman pumping schemes on stimulated Brillouin scattering (SBS) is investigated in this study. By using a linear cavity, we utilize residual Brillouin pump (BP) and Raman pump (RP) power after each transmission through a 25 km single-mode fiber (SMF) used as a gain medium. The SBS threshold power is reduced in the forward, backward, and bidirectional Raman pumping schemes by 2.5, 1.75, and 2.75 dB, respectively when the 1480 nm RP power is fixed at 150 mW and the BP wavelength is 1580 nm. Surprisingly, it is revealed that the SBS threshold reduction depends strongly and solely on Raman gain and it is independent of the Raman pumping schemes. In addition, the effect of Raman amplification on SBS is more effective at the SBS threshold, especially in the bidirectional and forward schemes.
  3. Wong J, Chin Liew S, Wong E
    Appl Opt, 2020 Nov 01;59(31):9690-9697.
    PMID: 33175805 DOI: 10.1364/AO.405227
    The ECO-BB (Sea Bird Scientific) is a popular instrument used by water optics researchers to measure the backscattering coefficient of waters in the visible to near-infrared wavelengths. The ECO-BB is calibrated by default for oceanic waters where the backscattering coefficient is typically low. In inland and coastal waters however, there is a tendency for the ECO-BB to reach saturation due to the high number of suspended particles. In the paper, a simple method is presented to extend the range of the ECO-BB instrument in such waters using a nephelometric turbidimeter. The method was first tested on powdered calcium carbonate in pure freshwater, followed by collected water samples from the Singapore Straits and the Lupar River in Sarawak. All three tests confirm the correlation between the ECO-BB and turbidimeter and show that the turbidimeter is a good proxy for backscattering coefficient measurements in turbid waters.
  4. Yap SS, Siew WO, Tou TY, Ng SW
    Appl Opt, 2002 Mar 20;41(9):1725-8.
    PMID: 11921803
    A microscope slide acting as a passive waveguide was coated by three separate poly(vinyl alcohol) films that were doped with Coumarin 460, Disodium Fluorescein, and Rhodamine 640 perchlorate. On collinear pumping by a nitrogen laser, these dyes furnished primary red-green-blue laser emissions that were collected and waveguided by the microscope slide but exited from both ends. Frosting the waveguide exit introduced light scattering at the glass-air interface and spatially overlaid the red-green-blue laser emissions that emerged as a uniform white-light beam.
  5. Zamzuri AK, Al-Mansoori MH, Samsuri NM, Mahdi MA
    Appl Opt, 2010 Jun 20;49(18):3506-10.
    PMID: 20563203 DOI: 10.1364/AO.49.003506
    We demonstrate the generation of multiple Brillouin Stokes lines generation assisted by Rayleigh scattering in Raman fiber laser. The linear cavity is utilized to take advantage of the Rayleigh scattering effect, and it also produces two strong spectral peaks at 1555 and 1565nm. Under a strong pumping condition, the Rayleigh backscatters contribute to the oscillation efficiency, which increases the Brillouin Stokes lines intensity between these two wavelength ranges. The multiple Stokes lines get stronger by suppressing the buildup of free-running longitudinal modes in the laser structure.
  6. Zen DI, Saidin N, Damanhuri SS, Harun SW, Ahmad H, Ismail MA, et al.
    Appl Opt, 2013 Feb 20;52(6):1226-9.
    PMID: 23434993 DOI: 10.1364/AO.52.001226
    We demonstrate mode locking of a thulium-bismuth codoped fiber laser (TBFL) operating at 1901.6 nm, using a graphene-based saturable absorber (SA). In this work, a single layer graphene is mechanically exfoliated using the scotch tape method and directly transferred onto the surface of a fiber pigtail to fabricate the SA. The obtained Raman spectrum characteristic indicates that the graphene on the core surface has a single layer. At 1552 nm pump power of 869 mW, the mode-locked TBFL self starts to generate an optical pulse train with a repetition rate of 16.7 MHz and pulse width of 0.37 ps. This is a simple, low-cost, stable, and convenient laser oscillator for applications where eye-safe and low-photon-energy light sources are required, such as sensing and biomedical diagnostics.
  7. Zulkifli MZ, Ahmad H, Taib JM, Muhammad FD, Dimyati K, Harun SW
    Appl Opt, 2013 Jun 1;52(16):3753-6.
    PMID: 23736330 DOI: 10.1364/AO.52.003753
    A multiwavelength Brillouin/Raman distributed Bragg reflector fiber laser operating in the S-band region is proposed and demonstrated. The laser uses a 7.7 km long dispersion-shifted fiber with an effective mode area of 15 μm(2) as the Brillouin and Raman gain media simultaneously. Two 1420 nm laser diodes with a combined power of 372 mW are used as pump sources, while a fiber Bragg grating with a center wavelength of 1500 nm is used as a reflector in the cavity. The setup is capable of generating 6 clearly defined Stokes lines at the highest pump power, spanning from 1499.8 to 1500.3 nm with the even Stokes having relatively higher peak powers, between 1.4 and 3.5 dBm as compared to the odd Stokes, which have peak powers between -4.7 and -5.0 dBm. The output of the laser is very stable and shows little to no fluctuations over a monitoring period of 50 min.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links