Displaying publications 21 - 29 of 29 in total

Abstract:
Sort:
  1. Yu M, Xu S, Hu H, Li S, Yang G
    Behav Brain Res, 2023 Apr 12;443:114209.
    PMID: 36368444 DOI: 10.1016/j.bbr.2022.114209
    OBJECTIVE: We investigated brain activity associated with executive control attention network in elite, expert, and novice female ice hockey athletes during the revised lateralized attention network tast to determine whether the neural correlates of performance differ by skill level.

    METHODS: We collected and analyzed functional near-infrared spectroscopy data of 38 participants while performing the revised lateralized attention network tast.

    RESULTS: Elite players were significantly faster than novices (p = .005), and the experts' overall accuracy rate (ACC) was higher than that of novices (p = .001). The effect of the executive network on reaction time was higher in novices than in elite players (p = .008) and experts (p = .004). The effect of the executive network on the ACC was lower in elite players than in experts (p = .009) and novices (p = .010). Finally, elite player had higher flanker conflict effects on RT (p = .005) under the invalid cue condition. the effect of the alertness network and orientation on the ACC was lower in elite players than in novices (p = .000) and experts (p = .022). Changes in the blood oxygen level-dependent signal related to the flanker effect were significantly different in the right dorsolateral prefrontal cortex (F=3.980, p = .028) and right inferior frontal gyrus (F=3.703, p = .035) among the three groups. Elit players showed more efficient executive control (reduced conflict effect on ACC) (p = .006)in the RH.The changes related to the effect of blood oxygen level on orienting were significantly different in the right frontal eye fields (F=3.883, p = .030) among the three groups, Accompanied by significant activation of the right dorsolateral prefrontal cortex(p = .026).

    CONCLUSION: Our findings provide partial evidence of the superior cognitive performance and high neural efficiency of elite ice hockey players during cognitive tasks. These results demonstrate the right hemisphere superiority for executive control.We also found that specific brain activation in hockey players does not show a clear and linear relationship with skill level.

  2. Effendy MA, Yunusa S, Mat NH, Has ATC, Müller CP, Hassan Z
    Behav Brain Res, 2023 Feb 13;438:114169.
    PMID: 36273648 DOI: 10.1016/j.bbr.2022.114169
    Mitragynine, an indole alkaloid from the plant Mitragyna speciosa (Kratom), has been reported to modify hippocampal synaptic transmission. However, the role of glutamatergic neurotransmission modulating synaptic plasticity in mitragynine-induced synaptic changes is still unknown. Here, we determined the role of AMPA- and NMDA glutamate receptors in mitragynine-induced synaptic plasticity in the hippocampus. Male Sprague Dawley rats received either vehicle or mitragynine (10 mg/kg), with or without the AMPA receptor antagonist, NBQX (3 mg/kg), or the NMDA receptor antagonist, MK-801 (0.2 mg/kg). Field excitatory postsynaptic potentials (fEPSP) during baseline, paired-pulse facilitation (PPF) and long-term potentiation (LTP) were recorded in-vivo in the hippocampal CA1 area of anaesthetised rats. Basal synaptic transmission and LTP were significantly impaired after mitragynine, NBQX, and MK-801 alone, without an effect on PPF. Combined effects suggest a weak functional AMPA- as well as NMDA receptor antagonist action of mitragynine.
  3. Suhaimi FW, Zul Aznal AN, Mohamad Nor Hazalin NA, Teh LK, Hassan Z, Salleh MZ
    Behav Brain Res, 2023 May 28;446:114411.
    PMID: 36997094 DOI: 10.1016/j.bbr.2023.114411
    Kratom (M. speciosa Korth) is an herbal plant native to Southeast Asia. The leaves have been widely used to alleviate pain and opioid withdrawal symptoms. However, the increasing trend of recreational use of kratom among youth is concerning because substance abuse may render the adolescent brain more susceptible to neuropathological processes, causing dramatic consequences that persist into adulthood. Therefore, the present study aimed to investigate the long-term effects of mitragynine, the main alkaloid and lyophilized kratom decoction (LKD) exposure during adolescence on cognitive behaviours and brain metabolite profiles in adult rats. Adolescent male Sprague-Dawley rats were given mitragynine (3, 10 or 30 mg/kg) or LKD orally for 15 consecutive days during postnatal days 31-45 (PND31-45). Behavioural testing was performed during adulthood (PND70-84) and the brains were subjected to metabolomic analysis. The results show that a high dose of mitragynine impaired long-term object recognition memory. Social behaviour and spatial learning were not affected, but both mitragynine and LKD impaired reference memory. Brain metabolomic study revealed several altered metabolic pathways that may be involved in the cognitive behavioural effects of LKD and mitragynine exposure. These pathways include arachidonic acid, taurine and hypotaurine, pantothenate and CoA biosynthesis, and tryptophan metabolism, while the N-isovalerylglycine was identified as the potential biomarker. In summary, adolescent kratom exposure can cause long-lasting cognitive behavioural deficits and alter brain metabolite profiles that are still evident in adulthood. This finding also indicates that the adolescent brain is vulnerable to the impact of early kratom use.
  4. Chen W, Chen Y, Aslam MS, Shen J, Tong T, Yan S, et al.
    Behav Brain Res, 2023 Oct 18;455:114627.
    PMID: 37619770 DOI: 10.1016/j.bbr.2023.114627
    BACKGROUND: Depression is a severe emotional condition that significantly affects the quality of life. Acupuncture exerts preventive effects on depression in rats with post-chronic unpredictable mild stress (CUMS). Methods The study involved chronic unpredictable mild stress (CUMS) depression model mice to administer acupuncture as a preventative measure to investigate the mechanism of acupuncture's antidepressant and observe the effect of acupuncture on impact via the Lateral Habenula (LHb) and Gut-Liver-Brain Axis. The researcher investigated molecules correlating with a nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway and assessed inflammation in the LHb and liver. In addition, 16 S rDNA bioinformatics study revealed the quantity and variety of gut microbiota. Rats were randomly divided into five groups: control (CON), CUMS, CUMS + acupuncture (AP), CUMS + fluoxetine (FX) and CUMS + N(G) -nitro -L- arginine methyl ester (LNAME) group. Except for the CON group, other rats were exposed to CUMS condition for 28 days. Simultaneously, manual acupuncture (at Fengfu and Shangxing acupoints, once every other day) and fluoxetine gavage (2.1 mg/kg, 0.21 mg/mL, daily) were conducted to the groups of AP and FX, respectively, after stressors. Rats in LNAME group were treated with LNAME normal saline (10 mg/kg, 1 mg/mL, i.p.) solution. Behavioural tests and biological detection methods were conducted sequentially to evaluate depressionlike phenotype in rats.

    RESULTS: The results showed CUMS induced depression-like behaviours, hyper-activation of NO/cGMP signaling pathway, inflammation in serum, LHb and liver, and dysbiosis of the gut microbiota. These changes could be prevented and ameliorated by acupuncture to varying extents.

    CONCLUSION: Acupuncture prevented and attenuated depression-like phenotype induced by CUMS, possibly via regulating the NO/cGMP signaling pathway and thus improving inflammation in serum, LHb and liver, and gut microbiota dysbiosis. In addition, these can be evidence of the existence of the gut-liver-brain axis.

  5. Chun LW, Ramachandran RK, Othman SFF, Has ATC, George A, Mat NH, et al.
    Behav Brain Res, 2023 Apr 06;447:114423.
    PMID: 37030545 DOI: 10.1016/j.bbr.2023.114423
    Persicaria minor (P. minor) is a herbal plant with many uses in food, perfume, and the medical industry. P. minor extract contains flavonoids with antioxidant and anticholinesterase capacity, which could enhance cognitive functions. P. minor extract has been proven to enhance memory. However, its role in an animal model of chronic cerebral hypoperfusion (CCH), which resembles human vascular dementia, has yet to be explored. Therefore, the present study investigates the effects of chronic (14 days) administration of aqueous P. minor extract on different stages of learning and memory processes and the metabolic pathways involved in the chronic cerebral hypoperfused rats induced by the permanent bilateral occlusion of common carotid arteries (PBOCCA) surgery. Chronic treatment of P. minor extract at doses of 200 and 300 mg/kg, enhanced recognition memory of the PBOCCA rats. P. minor extract (200 mg/kg) was also found to restore the spatial memory impairment induced by CCH. A high dose (300 mg/kg) of the P. minor extract significantly increased the expression of both ACh and GABA neurotransmitters in the hippocampus. Further, distinctive metabolite profiles were observed in rats with different treatments. Three major pathways involved in the cognitive enhancement mechanism of P. minor were identified. The present findings demonstrated an improving effect of P. minor extract on memory in the CCH rat model, suggesting that P. minor extract could be a potential treatment for vascular dementia and Alzheimer's patients. P. minor is believed to improve cognitive deficits by regulating pathways involved in retinol, histidine, pentose, glucuronate, and CoA metabolism.
  6. Japarin RA, Harun N, Hassan Z, Müller CP
    Behav Brain Res, 2023 Sep 13;453:114638.
    PMID: 37619769 DOI: 10.1016/j.bbr.2023.114638
    Mitragynine (MG) is the primary active constituent of Mitragyna speciosa Korth (kratom), a psychoactive Southeast Asian plant with potential therapeutic use. Numerous studies support roles of dopaminergic system in drug reward. However, the involvement of the dopaminergic system in mediating MG reward and drug-seeking is poorly understood. Using conditioned place preference (CPP) paradigm, the present study aims to evaluate the roles of the dopamine (DA) D1 receptor in the acquisition and expression of MG-induced CPP in rats. The effects of SCH-23390, a selective DA D1 receptor antagonist, on the acquisition of MG-induced CPP were first investigated. Rats were pre-treated systemically with SCH-23390 (0, 0.1 and 0.3 mg/kg, i.p.) prior to MG (10 mg/kg) conditioning sessions. Next, we tested the effects of the DA D1 receptor antagonist on the expression of MG-induced CPP. Furthermore, the effects of a MG-priming dose (5 mg/kg) on the reinstatement of extinguished CPP were tested. The results showed that SCH-23390 dose-dependently suppressed the acquisition of a MG-induced CPP. In contrast, SCH-23390 had no effect on the expression of a MG-induced CPP. The findings of this study suggested a crucial role of the DA D1 receptor in the acquisition, but not the expression of the rewarding effects of MG in a CPP test. Furthermore, blockade of the D1-like receptor during conditioning did not prevent MG priming effects on CPP reinstatement test, suggesting no role for the DA D1 receptor in reinstatement sensitivity.
  7. Tan FHP, Najimudin N, Watanabe N, Shamsuddin S, Azzam G
    Behav Brain Res, 2023 Aug 24;452:114568.
    PMID: 37414223 DOI: 10.1016/j.bbr.2023.114568
    Alzheimer's disease (AD) is the most common neurodegenerative condition in civilizations worldwide. The distinctive occurrence of amyloid-beta (Aβ) accumulation into insoluble fibrils is part of the disease pathophysiology with Aβ42 being the most toxic and aggressive Aβ species. The polyphenol, p-Coumaric acid (pCA), has been known to boost a number of therapeutic benefits. Here, pCA's potential to counteract the negative effects of Aβ42 was investigated. First, pCA was confirmed to reduce Aβ42 fibrillation using an in vitro activity assay. The compound was next examined on Aβ42-exposed PC12 neuronal cells and was found to significantly decrease Aβ42-induced cell mortality. pCA was then examined using an AD Drosophila melanogaster model. Feeding of pCA partially reversed the rough eye phenotype, significantly lengthened AD Drosophila's lifespan, and significantly enhanced the majority of the AD Drosophila's mobility in a sex-dependent manner. The findings of this study suggest that pCA may have therapeutic benefits for AD.
  8. Che Has AT
    Behav Brain Res, 2023 Aug 24;452:114551.
    PMID: 37348654 DOI: 10.1016/j.bbr.2023.114551
    Status epilepticus is a neurological disorder that can result in various neuropathological conditions and presentations. Various studies involving animal models have been accomplished to understand and replicating its prominent manifestations including characteristics of related clinical cases. Up to these days, there are variety of methods and techniques to be utilized in inducing this disorder that can be chemically or electrically applied which depending on the experimental designs and targets of the studies. In particular, the chemically induced pilocarpine animal model of status epilepticus is a reliable choice which has evolved for 40 years from its initial discovery back in 1983. Although the development of the model can be considered as a remarkable breakthrough in understanding status epilepticus, several aspects of the model have been improved, throughout the years. Among the major issues in developing this model are the morbidity and mortality rates during induction process. Several modifications have been introduced in the process by different studies to tackle the related problems including application of dose fractionation, adaptation of pilocarpine to lithium-pilocarpine model and utilization of various drugs. Despite all challenges and drawbacks, this model has proven its pertinent and relevance with improvements that have been adapted since it was introduced 40 years ago. In this review, we emphasize on the evolution of this animal model from the beginning until now (1983 - 2023) and the related issues that have made this model still a popular choice in status epilepticus studies.
  9. Mando Z, Mando H, Afzan A, Shaari K, Hassan Z, Mohamad Taib MNA, et al.
    Behav Brain Res, 2024 May 28;466:114976.
    PMID: 38599249 DOI: 10.1016/j.bbr.2024.114976
    Although there are various treatments available for depression, some patients may experience resistance to treatment or encounter adverse effects. Centella asiatica (C. asiatica) is an ancient medicinal herb used in Ayurvedic medicine for its rejuvenating, neuroprotective and psychoactive properties. This study aims to explore the antidepressant-like effects of the major constituents found in C. asiatica, i.e., asiatic acid, asiaticoside, madecassic acid, and madecassoside at three doses (1.25, 2.5, and 5 mg/kg, i.p), on the behavioural and cortisol level of unpredictable chronic stress (UCS) zebrafish model. Based on the findings from the behavioural study, the cortisol levels in the zebrafish body after treatment with the two most effective compounds were measured using enzyme-linked immunosorbent assay (ELISA). Furthermore, a molecular docking study was conducted to predict the inhibitory impact of the triterpenoid compounds on serotonin reuptake. The in vivo results indicate that madecassoside (1.25, 2.5, and 5 mg/kg), asiaticoside and asiatic acid (5 mg/kg) activated locomotor behaviour. Madecassoside at all tested doses and asiaticoside at 2.5 and 5 mg/kg significantly decreased cortisol levels compared to the stressed group, indicating the potential regulation effect of madecassoside and asiaticoside on the hypothalamic-pituitary-adrenal axis overactivity. This study highlights the potential benefits of madecassoside and asiaticoside in alleviating depressive symptoms through their positive effects on behaviour and the hypothalamic-pituitary-adrenal (HPA)- axis in a chronic unpredictable stress zebrafish model. Furthermore, the in silico study provided additional evidence to support these findings. These promising results suggest that C. asiatica may be a valuable and cost-effective therapeutic option for depression, and further research should be conducted to explore its potential benefits.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links