Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Kimura Y, Maeda M, Kimupa M, Lai OM, Tan SH, Hon SM, et al.
    Biosci Biotechnol Biochem, 2002 Apr;66(4):820-7.
    PMID: 12036055
    A basic glycoprotein, which was recognized by IgE from oil palm pollinosis patients, has been purified from oil palm pollen (Elaeis guineensis Jacq.), which is a strong allergen and causes severe pollinosis in Malaysia and Singapore. Soluble proteins were extracted from defatted palm pollen with both Tris-HCl buffer (pH 7.8) and Na-acetate buffer (pH 4.0). The allergenic glycoprotein was purified from the total extract to homogeneity with 0.4% yield by a combination of DEAE- and CM-cellulose, SP-HPLC, and gel filtration. The purified oil palm pollen glycoprotein with molecular mass of 31 kDa was recognized by the beta1-2 xylose specific antibody, suggesting this basic glycoprotein bears plant complex type N-glycan(s). The palm pollen basic glycoprotein, designated Ela g Bd 31 K, was recognized by IgE of palm pollinosis patients, suggesting Ela g Bd 31 K should be one of the palm pollen allergens. The preliminary structural analysis of N-glycans linked to glycoproteins of palm pollens showed that the antigenic N-glycans having alpha1-3 fucose and alpha1-2 xylose residues (GlcNAc(2 to approximately 0)Man3Xyl1Fuc(1 to approximately 0)GlcNAc2) actually occur on the palm pollen glycoproteins, in addition to the high-mannose type structures (Man(9 to approximately 5)GlcNAc2).
  2. Nathan S, Rader C, Barbas CF
    Biosci Biotechnol Biochem, 2005 Dec;69(12):2302-11.
    PMID: 16377887
    The isolation of therapeutic and functional protease inhibitors in vitro via combinatorial chemistry and phage display technology has been described previously. Here we report the construction of a combinatorial mouse-human chimeric antibody fragment (Fab) antibody library targeted against the protease of the tropical pathogen, Burkholderia pseudomallei. The resulting library was biopanned against the protease, and selected clones were analyzed for their ability to function as protease inhibitors. Three families of Fabs were identified by restriction fingerprinting, all of which demonstrated high specificity towards the protease of B. pseudomallei. Purified Fabs also demonstrated the capacity to inhibit B. pseudomallei protease activity in vitro, and this inhibitory property was exclusive to the pathogenic protease. Thus these recombinant antibodies are candidates for immunotherapy and tools to aid in further elucidation of the mechanism of action of the B. pseudomallei protease.
  3. Shirasuka Y, Nakajima K, Asakura T, Yamashita H, Yamamoto A, Hata S, et al.
    Biosci Biotechnol Biochem, 2004 Jun;68(6):1403-7.
    PMID: 15215616
    A unique taste-modifying activity that converts the sense of sourness to the sense of sweetness occurs in the fruit of the plant Curculigo latifolia, intrinsic to West Malaysia. The active component, known as curculin, is a protein consisting of two identical subunits. We have found a new taste-modifying protein, named neoculin, of the same origin. Both chemical analysis and cDNA cloning characterized neoculin as a heterodimeric protein consisting of an acidic, glycosylated subunit of 113 amino acid residues and a basic subunit that is the monomeric curculin itself.
  4. Ahmad FB, Ghaffari Moghaddam M, Basri M, Abdul Rahman MB
    Biosci Biotechnol Biochem, 2010;74(5):1025-9.
    PMID: 20460723
    An easy and efficient strategy to prepare betulinic acid esters with various anhydrides was used by the enzymatic synthesis method. It involves lipase-catalyzed acylation of betulinic acid with anhydrides as acylating agents in organic solvent. Lipase from Candida antarctica immobilized on an acrylic resin (Novozym 435) was employed as a biocatalyst. Several 3-O-acyl-betulinic acid derivatives were successfully obtained by this procedure. The anticancer activity of betulinic acid and its 3-O-acylated derivatives were then evaluated in vitro against human lung carcinoma (A549) and human ovarian (CAOV3) cancer cell lines. 3-O-glutaryl-betulinic acid, 3-O-acetyl-betulinic acid, and 3-O-succinyl-betulinic acid showed IC(50)<10 microg/ml against A549 cancer cell line tested and showed better cytotoxicity than betulinic acid. In an ovarian cancer cell line, all betulinic acid derivatives prepared showed weaker cytotoxicity than betulinic acid.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links