Displaying publications 21 - 40 of 57 in total

Abstract:
Sort:
  1. Goulter RM, Taran E, Gentle IR, Gobius KS, Dykes GA
    Colloids Surf B Biointerfaces, 2014 Jul 1;119:90-8.
    PMID: 24880987 DOI: 10.1016/j.colsurfb.2014.04.003
    The role of Escherichia coli H antigens in hydrophobicity and attachment to glass, Teflon and stainless steel (SS) surfaces was investigated through construction of fliC knockout mutants in E. coli O157:H7, O1:H7 and O157:H12. Loss of FliC(H12) in E. coli O157:H12 decreased attachment to glass, Teflon and stainless steel surfaces (p<0.05). Complementing E. coli O157:H12 ΔfliC(H12) with cloned wildtype (wt) fliC(H12) restored attachment to wt levels. The loss of FliCH7 in E. coli O157:H7 and O1:H7 did not always alter attachment (p>0.05), but complementation with cloned fliC(H12), as opposed to cloned fliCH7, significantly increased attachment for both strains compared with wt counterparts (p<0.05). Hydrophobicity determined using bacterial adherence to hydrocarbons and contact angle measurements differed with fliC expression but was not correlated to the attachment to materials included in this study. Purified FliC was used to functionalise silicone nitride atomic force microscopy probes, which were used to measure adhesion forces between FliC and substrates. Although no significant difference in adhesion force was observed between FliC(H12) and FliCH7 probes, differences in force curves suggest different mechanism of attachment for FliC(H12) compared with FliCH7. These results indicate that E. coli strains expressing flagellar H12 antigens have an increased ability to attach to certain abiotic surfaces compared with E. coli strains expressing H7 antigens.
  2. Ali TH, Hussen RS, Heidelberg T
    Colloids Surf B Biointerfaces, 2014 Nov 1;123:981-5.
    PMID: 25465761 DOI: 10.1016/j.colsurfb.2014.10.054
    A series of sugar-based surfactants, involving a single hydrophobic chain (C12) and two side-by-side arranged head groups, was prepared form simple glucose precursors. All surfactants were highly water soluble and exhibited exclusively micellar assemblies. This behavior makes them interesting candidates for oil in water emulsifiers.
  3. Rabbani G, Khan MJ, Ahmad A, Maskat MY, Khan RH
    Colloids Surf B Biointerfaces, 2014 Nov 1;123:96-105.
    PMID: 25260221 DOI: 10.1016/j.colsurfb.2014.08.035
    The primary objective of this study is to explore the interaction of β-galactosidase with copper oxide nanoparticles (CuO NPs). Steady-state absorption, fluorescence and circular dichroism (CD) spectroscopic techniques have been employed to unveil the conformational changes of β-galactosidase induced by the binding of CuO NPs. Temperature dependent fluorescence quenching results indicates a static quenching mechanism in the present case. The binding thermodynamic parameters delineate the predominant role of H-bonding and van der Waals forces between β-galactosidase and CuO NPs binding process. The binding was studied by isothermal titration calorimetry (ITC) and the result revealed that the complexation is enthalpy driven, the ΔH°<0, ΔS°<0 indicates the formation of hydrogen bonds between β-galactosidase and CuO NPs occurs. Disruption of the native conformation of the protein upon binding with CuO NPs is reflected through a reduced functionality (in terms of hydrolase activity) of the protein CuO NPs conjugate system in comparison to the native protein and CuO NPs exhibited a competitive mode of inhibition. This also supports the general belief that H-bond formation occurs with NPs is associated with a lesser extent of modification in the native structure. Morphological features and size distributions were investigated using transmission electron microscopy (TEM) and dynamic light scattering (DLS). Additionally the considerable increase in the Rh following the addition of CuO NPs accounts for the unfolding of β-galactosidase. Chemical and thermal unfolding of β-galactosidase, when carried out in the presence of CuO NPs, also indicated a small perturbation in the protein structure. These alterations in functional activity of nanoparticle bound β-galactosidase which will have important consequences should be taken into consideration while using nanoparticles for diagnostic and therapeutic purposes.
  4. Shahadat M, Teng TT, Rafatullah M, Arshad M
    Colloids Surf B Biointerfaces, 2015 Feb 1;126:121-37.
    PMID: 25543989 DOI: 10.1016/j.colsurfb.2014.11.049
    This article explains recent advances in the synthesis and characterization of novel titanium-based nanocomposite materials. Currently, it is a pressing concern to develop innovative skills for the fabrication of hybrid nanomaterials under varying experimental conditions. This review generally focuses on the adsorption behavior of nanocomposites for the exclusion of organic and inorganic pollutants from industrial effluents and their significant applications in various fields. The assessment of recently published articles on the conjugation of organic polymers with titanium has revealed that these materials may be a new means of managing aquatic pollution. These nanocomposite materials not only create alternative methods for designing novel materials, but also develop innovative industrial applications. In the future, titanium-based hybrid nanomaterials are expected to open new approaches for demonstrating their outstanding applications in diverse fields.
  5. Ramimoghadam D, Bagheri S, Abd Hamid SB
    Colloids Surf B Biointerfaces, 2015 Sep 1;133:388-411.
    PMID: 26073507 DOI: 10.1016/j.colsurfb.2015.02.003
    Magnetic iron oxide nanoparticles (MNPs) have emerged as highly desirable nanomaterials in the context of many research works, due to their extensive industrial applications. However, they are prone to agglomerate on account of the anisotropic dipolar attraction, and therefore misled the particular properties related to single-domain magnetic nanostructures. The surface modification of MNPs is quite challenging for many applications, as it involves surfactant-coating for steric stability, or surface modifications that results in repulsive electrostatic force. Hereby, we focus on the dispersion of MNPs and colloidal stability.
  6. Raghavendran HR, Mohan S, Genasan K, Murali MR, Naveen SV, Talebian S, et al.
    Colloids Surf B Biointerfaces, 2016 Mar 1;139:68-78.
    PMID: 26700235 DOI: 10.1016/j.colsurfb.2015.11.053
    Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering.
  7. Choudhary S, Jain A, Amin MCIM, Mishra V, Agrawal GP, Kesharwani P
    Colloids Surf B Biointerfaces, 2016 May 01;141:268-277.
    PMID: 26859118 DOI: 10.1016/j.colsurfb.2016.01.048
    The study was intended to develop a new intra-gastric floating in situ microballoons system for controlled delivery of rabeprazole sodium and amoxicillin trihydrate for the treatment of peptic ulcer disease. Eudragit S-100 and hydroxypropyl methyl cellulose based low density microballoons systems were fabricated by employing varying concentrations of Eudragit S-100 and hydroxypropyl methyl cellulose, to which varying concentrations of drug was added, and formulated by stirring at various speed and time to optimize the process and formulation variable. The formulation variables like concentration and ratio of polymers significantly affected the in vitro drug release from the prepared floating device. The validation of the gastro-retentive potential of the prepared microballoons was carried out in rabbits by orally administration of microballoons formulation containing radio opaque material. The developed formulations showed improved buoyancy and lower ulcer index as compared to that seen with plain drugs. Ulcer protective efficacies were confirmed in ulcer-bearing mouse model. In conclusion, greater compatibility, higher gastro-retention and higher anti-ulcer activity of the presently fabricated formulations to improve potential of formulation for redefining ulcer treatment are presented here. These learning exposed a targeted and sustained drug delivery potential of prepared microballoons in gastric region for ulcer therapeutic intervention as corroborated by in vitro and in vivo findings and, thus, deserves further attention for improved ulcer treatment.
  8. Othman R, Vladisavljević GT, Thomas NL, Nagy ZK
    Colloids Surf B Biointerfaces, 2016 May 01;141:187-195.
    PMID: 26852102 DOI: 10.1016/j.colsurfb.2016.01.042
    Paracetamol (PCM)-loaded composite nanoparticles (NPs) composed of a biodegradable poly(d,l-lactide) (PLA) polymer matrix filled with organically modified montmorillonite (MMT) nanoparticles were fabricated by antisolvent nanoprecipitation in a microfluidic co-flow glass capillary device. The incorporation of MMT in the polymer improved both the drug encapsulation efficiency and the drug loading, and extended the rate of drug release in simulated intestinal fluid (pH 7.4). The particle size increased on increasing both the drug loading and the concentration of MMT in the polymer matrix, and decreased on increasing the aqueous to organic flow rate ratio. The drug encapsulation efficiency in the NPs was higher at higher aqueous to organic flow rate ratio due to faster formation of the NPs. The PCM-loaded PLA NPs containing 2 wt% MMT in PLA prepared at an aqueous to organic flow rate ratio of 10 with an orifice size of 200 μm exhibited a spherical shape with a mean size of 296 nm, a drug encapsulation efficiency of 38.5% and a drug loading of 5.4%. The encapsulation of MMT and PCM in the NPs was confirmed by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and attenuated total reflection-Fourier transform infrared spectroscopy.
  9. Mohd Daud N, Saeful Bahri IF, Nik Malek NA, Hermawan H, Saidin S
    Colloids Surf B Biointerfaces, 2016 Sep 01;145:130-9.
    PMID: 27153117 DOI: 10.1016/j.colsurfb.2016.04.046
    Chlorhexidine (CHX) is known for its high antibacterial substantivity and is suitable for use to bio-inert medical devices due to its long-term antibacterial efficacy. However, CHX molecules require a crosslinking film to be stably immobilized on bio-inert metal surfaces. Therefore, polydopamine (PDA) was utilized in this study to immobilize CHX on the surface of 316L type stainless steel (SS316L). The SS316L disks were pre-treated, modified with PDA film and immobilized with different concentrations of CHX (10mM-50mM). The disks were then subjected to various surface characterization analyses (ATR-FTIR, XPS, ToF-SIMS, SEM and contact angle measurement) and tested for their cytocompatibility with human skin fibroblast (HSF) cells and antibacterial activity against Escherichia coli and Staphylococcus aureus. The results demonstrated the formation of a thin PDA film on the SS316L surface, which acted as a crosslinking medium between the metal and CHX. CHX was immobilized via a reduction process that covalently linked the CHX molecules with the functional group of PDA. The immobilization of CHX increased the hydrophobicity of the disk surfaces. Despite this property, a low concentration of CHX optimized the viability of HSF cells without disrupting the morphology of adherent cells. The immobilized disks also demonstrated high antibacterial efficacy against both bacteria, even at a low concentration of CHX. This study demonstrates a strong beneficial effect of the crosslinked PDA film in immobilizing CHX on bio-inert metal, and these materials are applicable in medical devices. Specifically, the coating will restrain bacterial proliferation without suffocating nearby tissues.
  10. Sweeney S, Leo BF, Chen S, Abraham-Thomas N, Thorley AJ, Gow A, et al.
    Colloids Surf B Biointerfaces, 2016 Sep 01;145:167-75.
    PMID: 27182651 DOI: 10.1016/j.colsurfb.2016.04.040
    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs.
  11. Shao M, Hussain Z, Thu HE, Khan S, Katas H, Ahmed TA, et al.
    Colloids Surf B Biointerfaces, 2016 Nov 01;147:475-491.
    PMID: 27592075 DOI: 10.1016/j.colsurfb.2016.08.027
    Atopic dermatitis (AD) is a chronically relapsing skin inflammatory disorder characterized by perivascular infiltration of immunoglobulin-E (IgE), T-lymphocytes and mast cells. The key pathophysiological factors causing this disease are immunological disorders and the compromised epidermal barrier integrity. Pruritus, intense itching, psychological stress, deprived physical and mental performance and sleep disturbance are the hallmark features of this dermatological complication. Preventive interventions which include educational programs, avoidance of allergens, exclusive care towards skin, and the rational selection of therapeutic regimen play key roles in the treatment of dermatosis. In last two decades, it is evident from a plethora of studies that scientific focus is being driven from conventional therapies to the advanced nanocarrier-based regimen for an effective management of AD. These nanocarriers which include polymeric nanoparticles (NPs), hydrogel NPs, liposomes, ethosomes, solid lipid nanoparticles (SLNs) and nanoemulsion, provide efficient roles for the target specific delivery of the therapeutic payload. The success of these targeted therapies is due to their pharmaceutical versatility, longer retention time at the target site, avoiding off-target effects and preventing premature degradation of the incorporated drugs. The present review was therefore aimed to summarise convincing evidence for the therapeutic superiority of advanced nanocarrier-mediated strategies over the conventional therapies used in the treatment of AD.
  12. Sonali, Singh RP, Sharma G, Kumari L, Koch B, Singh S, et al.
    Colloids Surf B Biointerfaces, 2016 Nov 01;147:129-141.
    PMID: 27497076 DOI: 10.1016/j.colsurfb.2016.07.058
    The aim of this work was to formulate RGD-TPGS decorated theranostic liposomes, which contain both docetaxel (DTX) and quantum dots (QDs) for brain cancer imaging and therapy. RGD conjugated TPGS (RGD-TPGS) was synthesized and conjugation was confirmed by Fourier transform infrared (FTIR) spectroscopy and electrospray ionisation (ESI) mass spectroscopy (ESI-MS). The theranostic liposomes were prepared by the solvent injection method and characterized for their particle size, polydispersity, zeta-potential, surface morphology, drug encapsulation efficiency, and in-vitro release study. Biocompatibility and safety of theranostic liposomes were studied by reactive oxygen species (ROS) generation study and histopathology of brain. In-vivo study was performed for determination of brain theranostic effects in comparison with marketed formulation (Docel™) and free QDs. The particle sizes of the non-targeted and targeted theranostic liposomes were found in between 100 and 200nm. About 70% of drug encapsulation efficiency was achieved with liposomes. The drug release from RGD-TPGS decorated liposomes was sustained for more than 72h with 80% of drug release. The in-vivo results demonstrated that RGD-TPGS decorated theranostic liposomes were 6.47- and 6.98-fold more effective than Docel™ after 2h and 4h treatments, respectively. Further, RGD-TPGS decorated theranostic liposomes has reduced ROS generation effectively, and did not show any signs of brain damage or edema in brain histopathology. The results of this study have indicated that RGD-TPGS decorated theranostic liposomes are promising carrier for brain theranostics.
  13. Yee MS, Khiew PS, Chiu WS, Tan YF, Kok YY, Leong CO
    Colloids Surf B Biointerfaces, 2016 Dec 01;148:392-401.
    PMID: 27639489 DOI: 10.1016/j.colsurfb.2016.09.011
    Fouling of marine surfaces has been a perpetual problem ever since the days of the early sailors. The tenacious attachment of seaweed and invertebrates to man-made surfaces, notably on ship hulls, has incurred undesirable economic losses. Graphene receives great attention in the materials world for its unique combination of physical and chemical properties. Herein, we present a novel 2-step synthesis method of graphene-silver nanocomposites which bypasses the formation of graphene oxide (GO), and produces silver nanoparticles supported on graphene sheets through a mild hydrothermal reduction process. The graphene-Ag (GAg) nanocomposite combines the antimicrobial property of silver nanoparticles and the unique structure of graphene as a support material, with potent marine antifouling properties. The GAg nanocomposite was composed of micron-scaled graphene flakes with clusters of silver nanoparticles. The silver nanoparticles were estimated to be between 72 and 86nm (SEM observations) while the crystallite size of the silver nanoparticles (AgNPs) was estimated between 1 and 5nm. The nanocomposite also exhibited the SERS effect. GAg was able to inhibit Halomonas pacifica, a model biofilm-causing microbe, from forming biofilms with as little as 1.3wt.% loading of Ag. All GAg samples displayed significant biofilm inhibition property, with the sample recording the highest Ag loading (4.9wt.% Ag) associated with a biofilm inhibition of 99.6%. Moreover, GAg displayed antiproliferative effects on marine microalgae, Dunaliella tertiolecta and Isochrysis sp. and inhibited the growth of the organisms by more than 80% after 96h. The marine antifouling properties of GAg were a synergy of the biocidal AgNPs anchored on the stable yet flexible graphene sheets, providing maximum active contact surface areas to the target organisms.
  14. Hussain Z, Thu HE, Ng SF, Khan S, Katas H
    Colloids Surf B Biointerfaces, 2017 Feb 01;150:223-241.
    PMID: 27918967 DOI: 10.1016/j.colsurfb.2016.11.036
    Wound healing is a multifarious and vibrant process of replacing devitalized and damaged cellular structures, leading to restoration of the skin's barrier function, re-establishment of tissue integrity, and maintenance of the internal homeostasis. Curcumin (CUR) and its analogs have gained widespread recognition due to their remarkable anti-inflammatory, anti-infective, anticancer, immunomodulatory, antioxidant, and wound healing activities. However, their pharmaceutical significance is limited due to inherent hydrophobic nature, poor water solubility, low bioavailability, chemical instability, rapid metabolism and short half-life. Owing to their pharmaceutical limitations, newer strategies have been attempted in recent years aiming to mitigate problems related to the effective delivery of curcumanoids and to improve their wound healing potential. These advanced strategies include nanovesicles, polymeric micelles, conventional liposomes and hyalurosomes, nanocomposite hydrogels, electrospun nanofibers, nanohybrid scaffolds, nanoconjugates, nanostructured lipid carriers (NLCs), nanoemulsion, nanodispersion, and polymeric nanoparticles (NPs). The superior wound healing activities achieved after nanoencapsulation of the CUR are attributed to its target-specific delivery, longer retention at the target site, avoiding premature degradation of the encapsulated cargo and the therapeutic superiority of the advanced delivery systems over the conventional delivery. We have critically reviewed the literature and summarize the convincing evidence which explore the pharmaceutical significance and therapeutic feasibility of the advanced delivery systems in improving wound healing activities of the CUR and its analogs.
  15. Baba Ismail YM, Ferreira AM, Bretcanu O, Dalgarno K, El Haj AJ
    Colloids Surf B Biointerfaces, 2017 Nov 01;159:445-453.
    PMID: 28837894 DOI: 10.1016/j.colsurfb.2017.07.086
    This paper presents a new approach in assembling bone extracellular matrix components onto PLA films, and investigates the most favourable environment which can be created using the technique for cell-material interactions. Poly (lactic acid) (PLA) films were chemically modified by covalently binding the poly(ethylene imine) (PEI) as to prepare the substrate for immobilization of polyelectrolyte multilayers (PEMs) coating. Negatively charged polyelectrolyte consists of well-dispersed silicon-carbonated hydroxyapatite (SiCHA) nanopowders in hyaluronic acid (Hya) was deposited onto the modified PLA films followed by SiCHA in collagen type I as the positively charged polyelectrolyte. The outermost layer was finally cross-linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrocholoride and N-hydroxysulfosuccinimide sodium salt (EDC/NHS) solutions. The physicochemical features of the coated PLA films were monitored via X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscope (AFM). The amounts of calcium and collagen deposited on the surface were qualitatively and quantitatively determined. The surface characterizations suggested that 5-BL has the optimum surface roughness and highest amounts of calcium and collagen depositions among tested films. In vitro human mesenchymal stem cells (hMSCs) cultured on the coated PLA films confirmed that the coating materials greatly improved cell attachment and survival compared to unmodified PLA films. The cell viability, cell proliferation and Alkaline Phosphatase (ALP) expression on 5-BL were found to be the most favourable of the tested films. Hence, this newly developed coating materials assembly could contribute to the improvement of the bioactivity of polymeric materials and structures aimed to bone tissue engineering applications.
  16. Saw WS, Ujihara M, Chong WY, Voon SH, Imae T, Kiew LV, et al.
    Colloids Surf B Biointerfaces, 2018 Jan 01;161:365-374.
    PMID: 29101882 DOI: 10.1016/j.colsurfb.2017.10.064
    Physiochemical changes, including size, are known to affect gold nanoparticle cellular internalization and treatment efficacy. Here, we report the effect of four sizes of cystine/citric acid-coated confeito-like gold nanoparticles (confeito-AuNPs) (30, 60, 80 and 100nm) on cellular uptake, intracellular localization and photothermal anticancer treatment efficiency in MDA-MB231 breast cancer cells. Cellular uptake is size dependent with the smallest size of confeito-AuNPs (30nm) having the highest cellular internalization via clathrin- and caveolae-mediated endocytosis. However, the other three sizes (60, 80 and 100nm) utilize clathrin-mediated endocytosis for cellular uptake. The intracellular localization of confeito-AuNPs is related to their endocytosis mechanism, where all sizes of confeito-AuNPs were localized highly in the lysosome and mitochondria, while confeito-AuNPs (30nm) gave the highest localization in the endoplasmic reticulum. Similarly, a size-dependent trend was also observed in in vitro photothermal treatment experiments, with the smallest confeito-AuNPs (30nm) giving the highest cell killing rate, whereas the largest size of confeito-AuNPs (100nm) displayed the lowest photothermal efficacy. Its desirable physicochemical characteristics, biocompatible nature and better photothermal efficacy will form the basis for further development of multifunctional confeito-AuNP-based nanotherapeutic applications.
  17. Sagisaka M, Ono S, James C, Yoshizawa A, Mohamed A, Guittard F, et al.
    Colloids Surf B Biointerfaces, 2018 Aug 01;168:201-210.
    PMID: 29276082 DOI: 10.1016/j.colsurfb.2017.12.012
    Previous work (M. Sagisaka, et al. Langmuir 31 (2015) 7479-7487), showed the most effective fluorocarbon (FC) and hydrocarbon (HC) chain lengths in the hybrid surfactants FCm-HCn (sodium 1-oxo-1-[4-(perfluoroalkyl)phenyl]alkane-2-sulfonates, where m = FC length and n = HC length) were m and n = 6 and 4 for water solubilization, whereas m 6 and n 6, or m 6 and n 5, were optimal chain lengths for reversed micelle elongation in supercritical CO2. To clarify why this difference of only a few methylene chain units is so effective at tuning the solubilizing power and reversed micelle morphology, nanostructures of water-in-CO2 (W/CO2) microemulsions were investigated by high-pressure small-angle neutron scattering (SANS) measurements at different water-to-surfactant molar ratios (W0) and surfactant concentrations. By modelling SANS profiles with cylindrical and ellipsoidal form factors, the FC6-HCn/W/CO2 microemulsions were found to increase in size with increasing W0 and surfactant concentration. Ellipsoidal cross-sectional radii of the FC6-HC4/W/CO2 microemulsion droplets increased linearly with W0, and finally reached ∼39 Å and ∼78 Å at W0 = 85 (close to the upper limit of solubilizing power). These systems appear to be the largest W/CO2 microemulsion droplets ever reported. The aqueous domains of FC6-HC6 rod-like reversed micelles increased in size by 3.5 times on increasing surfactant concentration from 35 mM to 50 mM: at 35 mM, FC6-HC5 formed rod-like reversed micelles 5.3 times larger than FC6-HC6. Interestingly, these results suggest that hybrid HC-chains partition into the microemulsion aqueous cores with the sulfonate headgroups, or at the W/CO2 interfaces, and so play important roles for tuning the W/CO2 interfacial curvature. The super-efficient W/CO2-type solubilizer FC6-HC4, and the rod-like reversed micelle forming surfactant FC6-HC5, represent the most successful cases of low fluorine content additives. These surfactants facilitate VOC-free, effective and energy-saving CO2 solvent systems for applications such as extraction, dyeing, dry cleaning, metal-plating, enhanced oil recovery and organic/inorganic or nanomaterial synthesis.
  18. Siow KS, Britcher L, Kumar S, Griesser HJ
    Colloids Surf B Biointerfaces, 2018 Oct 09;173:447-453.
    PMID: 30326361 DOI: 10.1016/j.colsurfb.2018.10.015
    As some proteins are known to interact with sulfated and phosphated biomolecules such as specific glycosaminoglycans, this study derives from the hypothesis that sulfonate and phosphonate groups on solid polymer surfaces might cause specific interfacial interactions. Such surfaces were prepared by plasma polymerization of heptylamine (HA) and subsequent grafting of sulfonate or phosphonate groups via Michael-type addition of vinylic compounds. Adsorption of the proteins fibrinogen, albumin (HSA) and lysozyme on these functionalised plasma polymer surfaces was studied by XPS and quartz crystal microbalance with dissipation (QCM-D). It was also studied whether pre-adsorption with HSA would lead to a passivated surface against further adsorption of other proteins. XPS confirmed grafting of vinyl sulfonate and vinyl phosphonate onto the amine surface and showed that the proteins adsorbed to saturation at between 1 and 2 h. QCM-D showed rapid and irreversible adsorption of albumin on all three surfaces, while lysozyme could be desorbed with PBS to substantial extents from the sulfonated and phosphonated surfaces but not from the amine surface. Fibrinogen showed rapid initial adsorption followed by slower additional mass gain over hours. Passivation with albumin led to small and largely reversible subsequent adsorption of lysozyme, whereas with fibrinogen partial displacement yielded a mixed layer, regardless of the surface chemistry. Thus, protein adsorption onto these sulfonated and phosphonated surfaces is complex, and not dominated by electrostatic charge effects.
  19. Ng ZY, Wong JY, Panneerselvam J, Madheswaran T, Kumar P, Pillay V, et al.
    Colloids Surf B Biointerfaces, 2018 Dec 01;172:51-59.
    PMID: 30134219 DOI: 10.1016/j.colsurfb.2018.08.027
    Curcumin a component of turmeric, which is derived from Curcuma longa is used as a colouring agent and as a dietary spice for centuries. Extensive studies have been done on the anti-inflammatory activity of curcumin along with its molecular mechanism involving different signalling pathways. However, the physicochemical and biological properties such as poor solubility and rapid metabolism of curcumin have led to low bioavailability and hence limits its application. Current therapies for asthma such as bronchodilators and inhaled corticosteroids (ICS) are aimed at controlling disease symptoms and prevent asthma exacerbation. However, this approach requires lifetime therapy and is associated with a constellation of side effects. This creates a clear unmet medical need and there is an urgent demand for new and more-effective treatments. The present study is aimed to formulate liposomes containing curcumin and evaluate for its anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation on BCi-NS1.1 cell line. Curcumin and salbutamol liposomes were formulated using lipid hydration method. The prepared liposomes were characterized in terms of particle size, zeta potential, encapsulation efficiency and in-vitro release profile. The liposomes were tested on BCI-NS1.1 cell line to evaluate its anti-inflammatory properties. The various pro-inflammatory markers studied were Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-1β (IL-1β) and Tumour Necrosis Factor-a (TNF-a). Additionally, molecular mechanics simulations were used to elucidate the positioning, energy minimization, and aqueous dispersion of the liposomal architecture involving lecithin and curcumin. The prepared curcumin formulation showed an average size and zeta potential of 271.3 ± 3.06 nm and -61.0 mV, respectively. The drug encapsulation efficiency of liposomal curcumin is 81.1%. Both curcumin-loaded liposomes formulation (1 μg/mL, 5 μg/mL) resulted in significant (p 
  20. Siram K, Divakar S, Raghavan CV, Marslin G, Rahman H, Franklin G
    Colloids Surf B Biointerfaces, 2019 Feb 01;174:443-450.
    PMID: 30497005 DOI: 10.1016/j.colsurfb.2018.11.033
    The physico-chemical properties of lipids influencing the solubilisation of imatinib mesylate (IM) in lipid matrix were evaluated and a statistical model to predict the same has been derived in the present study. After experimental quantification of IM solubility in various lipids, Hansen Hildebrand's total solubility parameters were calculated in order to study the role of various forces connected to lipid-drug interaction. To develop a relationship between the various descriptors of the lipids and experimental solubility of IM in lipids (% w/w), quantitative structure-solubility relationship (QSSR) was used. To generate equations that can predict the solubility of IM in lipids (%w/w), multiple linear regression was used. Amongst the various lipids tested, glyceryl monostearate and behenic acid solubilised the highest (6.19 ± 0.22%) and lowest (0.01 ± 0.01%) amounts of IM respectively. Our results suggested that alkyl chain length, polarity of the lipids, index of cohesive interaction in solids, estimated number of hydrogen bonds that would be accepted by the solute from water molecules in an aqueous solution, estimated number of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution and solvent accessible surface area collectively play a significant role in solubilising IM in the lipids. The equation developed could predict the solubility of IM in lipids with good accuracy (R2pred = 0.912).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links