Displaying publications 21 - 29 of 29 in total

Abstract:
Sort:
  1. Ramos-Madrigal J, Sinding MS, Carøe C, Mak SST, Niemann J, Samaniego Castruita JA, et al.
    Curr Biol, 2021 01 11;31(1):198-206.e8.
    PMID: 33125870 DOI: 10.1016/j.cub.2020.10.002
    Extant Canis lupus genetic diversity can be grouped into three phylogenetically distinct clades: Eurasian and American wolves and domestic dogs.1 Genetic studies have suggested these groups trace their origins to a wolf population that expanded during the last glacial maximum (LGM)1-3 and replaced local wolf populations.4 Moreover, ancient genomes from the Yana basin and the Taimyr peninsula provided evidence of at least one extinct wolf lineage that dwelled in Siberia during the Pleistocene.35 Previous studies have suggested that Pleistocene Siberian canids can be classified into two groups based on cranial morphology. Wolves in the first group are most similar to present-day populations, although those in the second group possess intermediate features between dogs and wolves.67 However, whether this morphological classification represents distinct genetic groups remains unknown. To investigate this question and the relationships between Pleistocene canids, present-day wolves, and dogs, we resequenced the genomes of four Pleistocene canids from Northeast Siberia dated between >50 and 14 ka old, including samples from the two morphological categories. We found these specimens cluster with the two previously sequenced Pleistocene wolves, which are genetically more similar to Eurasian wolves. Our results show that, though the four specimens represent extinct wolf lineages, they do not form a monophyletic group. Instead, each Pleistocene Siberian canid branched off the lineage that gave rise to present-day wolves and dogs. Finally, our results suggest the two previously described morphological groups could represent independent lineages similarly related to present-day wolves and dogs.
  2. Ciucani MM, Jensen JK, Sinding MS, Smith O, Lucenti SB, Rosengren E, et al.
    Curr Biol, 2021 Dec 20;31(24):5571-5579.e6.
    PMID: 34655517 DOI: 10.1016/j.cub.2021.09.059
    The Sardinian dhole (Cynotherium sardous)1 was an iconic and unique canid species that was endemic to Sardinia and Corsica until it became extinct at the end of the Late Pleistocene.2-5 Given its peculiar dental morphology, small body size, and high level of endemism, several extant canids have been proposed as possible relatives of the Sardinian dhole, including the Asian dhole and African hunting dog ancestor.3,6-9 Morphometric analyses3,6,8-12 have failed to clarify the evolutionary relationship with other canids.We sequenced the genome of a ca-21,100-year-old Sardinian dhole in order to understand its genomic history and clarify its phylogenetic position. We found that it represents a separate taxon from all other living canids from Eurasia, Africa, and North America, and that the Sardinian dhole lineage diverged from the Asian dhole ca 885 ka. We additionally detected historical gene flow between the Sardinian and Asian dhole lineages, which ended approximately 500-300 ka, when the land bridge between Sardinia and mainland Italy was already broken, severing their population connectivity. Our sample showed low genome-wide diversity compared to other extant canids-probably a result of the long-term isolation-that could have contributed to the subsequent extinction of the Sardinian dhole.
  3. Gopalakrishnan S, Sinding MS, Ramos-Madrigal J, Niemann J, Samaniego Castruita JA, Vieira FG, et al.
    Curr Biol, 2018 11 05;28(21):3441-3449.e5.
    PMID: 30344120 DOI: 10.1016/j.cub.2018.08.041
    The evolutionary history of the wolf-like canids of the genus Canis has been heavily debated, especially regarding the number of distinct species and their relationships at the population and species level [1-6]. We assembled a dataset of 48 resequenced genomes spanning all members of the genus Canis except the black-backed and side-striped jackals, encompassing the global diversity of seven extant canid lineages. This includes eight new genomes, including the first resequenced Ethiopian wolf (Canis simensis), one dhole (Cuon alpinus), two East African hunting dogs (Lycaon pictus), two Eurasian golden jackals (Canis aureus), and two Middle Eastern gray wolves (Canis lupus). The relationships between the Ethiopian wolf, African golden wolf, and golden jackal were resolved. We highlight the role of interspecific hybridization in the evolution of this charismatic group. Specifically, we find gene flow between the ancestors of the dhole and African hunting dog and admixture between the gray wolf, coyote (Canis latrans), golden jackal, and African golden wolf. Additionally, we report gene flow from gray and Ethiopian wolves to the African golden wolf, suggesting that the African golden wolf originated through hybridization between these species. Finally, we hypothesize that coyotes and gray wolves carry genetic material derived from a "ghost" basal canid lineage.
  4. Gopalakrishnan S, Ebenesersdóttir SS, Lundstrøm IKC, Turner-Walker G, Moore KHS, Luisi P, et al.
    Curr Biol, 2022 Nov 07;32(21):4743-4751.e6.
    PMID: 36182700 DOI: 10.1016/j.cub.2022.09.023
    Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%-40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th-19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.
  5. Barnett R, Westbury MV, Sandoval-Velasco M, Vieira FG, Jeon S, Zazula G, et al.
    Curr Biol, 2020 Dec 21;30(24):5018-5025.e5.
    PMID: 33065008 DOI: 10.1016/j.cub.2020.09.051
    Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1-4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6-8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a ∼7x nuclear genome and a ∼38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (∼22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11-14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage.
  6. Griffiths HM, Ashton LA, Evans TA, Parr CL, Eggleton P
    Curr Biol, 2019 02 18;29(4):R118-R119.
    PMID: 30779897 DOI: 10.1016/j.cub.2019.01.012
    Termite-mediated decomposition is an important, but often overlooked, component of the carbon cycle. Using a large-scale suppression experiment in Borneo, Griffiths et al. found that termites contribute between 58 and 64% of mass loss from dead wood.
  7. Cai L, Arnold BJ, Xi Z, Khost DE, Patel N, Hartmann CB, et al.
    Curr Biol, 2021 03 08;31(5):1002-1011.e9.
    PMID: 33485466 DOI: 10.1016/j.cub.2020.12.045
    Despite more than 2,000-fold variation in genome size, key features of genome architecture are largely conserved across angiosperms. Parasitic plants have elucidated the many ways in which genomes can be modified, yet we still lack comprehensive genome data for species that represent the most extreme form of parasitism. Here, we present the highly modified genome of the iconic endophytic parasite Sapria himalayana Griff. (Rafflesiaceae), which lacks a typical plant body. First, 44% of the genes conserved in eurosids are lost in Sapria, dwarfing previously reported levels of gene loss in vascular plants. These losses demonstrate remarkable functional convergence with other parasitic plants, suggesting a common genetic roadmap underlying the evolution of plant parasitism. Second, we identified extreme disparity in intron size among retained genes. This includes a category of genes with introns longer than any so far observed in angiosperms, nearing 100 kb in some cases, and a second category of genes with exceptionally short or absent introns. Finally, at least 1.2% of the Sapria genome, including both genic and intergenic content, is inferred to be derived from host-to-parasite horizontal gene transfers (HGTs) and includes genes potentially adaptive for parasitism. Focused phylogenomic reconstruction of HGTs reveals a hidden history of former host-parasite associations involving close relatives of Sapria's modern hosts in the grapevine family. Our findings offer a unique perspective into how deeply angiosperm genomes can be altered to fit an extreme form of plant parasitism and demonstrate the value of HGTs as DNA fossils to investigate extinct symbioses.
  8. Lord E, Dussex N, Kierczak M, Díez-Del-Molino D, Ryder OA, Stanton DWG, et al.
    Curr Biol, 2020 10 05;30(19):3871-3879.e7.
    PMID: 32795436 DOI: 10.1016/j.cub.2020.07.046
    Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species' extinction. Analysis of the nuclear genome from a ∼18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bølling-Allerød interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links