Displaying publications 21 - 29 of 29 in total

Abstract:
Sort:
  1. Ciucani MM, Jensen JK, Sinding MS, Smith O, Lucenti SB, Rosengren E, et al.
    Curr Biol, 2021 Dec 20;31(24):5571-5579.e6.
    PMID: 34655517 DOI: 10.1016/j.cub.2021.09.059
    The Sardinian dhole (Cynotherium sardous)1 was an iconic and unique canid species that was endemic to Sardinia and Corsica until it became extinct at the end of the Late Pleistocene.2-5 Given its peculiar dental morphology, small body size, and high level of endemism, several extant canids have been proposed as possible relatives of the Sardinian dhole, including the Asian dhole and African hunting dog ancestor.3,6-9 Morphometric analyses3,6,8-12 have failed to clarify the evolutionary relationship with other canids.We sequenced the genome of a ca-21,100-year-old Sardinian dhole in order to understand its genomic history and clarify its phylogenetic position. We found that it represents a separate taxon from all other living canids from Eurasia, Africa, and North America, and that the Sardinian dhole lineage diverged from the Asian dhole ca 885 ka. We additionally detected historical gene flow between the Sardinian and Asian dhole lineages, which ended approximately 500-300 ka, when the land bridge between Sardinia and mainland Italy was already broken, severing their population connectivity. Our sample showed low genome-wide diversity compared to other extant canids-probably a result of the long-term isolation-that could have contributed to the subsequent extinction of the Sardinian dhole.
  2. Gelabert P, Sandoval-Velasco M, Serres A, de Manuel M, Renom P, Margaryan A, et al.
    Curr Biol, 2020 01 06;30(1):108-114.e5.
    PMID: 31839456 DOI: 10.1016/j.cub.2019.10.066
    As the only endemic neotropical parrot to have recently lived in the northern hemisphere, the Carolina parakeet (Conuropsis carolinensis) was an iconic North American bird. The last surviving specimen died in the Cincinnati Zoo in 1918 [1]. The cause of its extinction remains contentious: besides excessive mortality associated to habitat destruction and active hunting, their survival could have been negatively affected by its range having become increasingly patchy [2] or by the exposure to poultry pathogens [3, 4]. In addition, the Carolina parakeet showed a predilection for cockleburs, an herbaceous plant that contains a powerful toxin, carboxyatractyloside, or CAT [5], which did not seem to affect them but made the birds notoriously toxic to most predators [3]. To explore the demographic history of this bird, we generated the complete genomic sequence of a preserved specimen held in a private collection in Espinelves (Girona, Spain), as well as of a close extant relative, Aratinga solstitialis. We identified two non-synonymous genetic changes in two highly conserved proteins known to interact with CAT that could underlie a specific dietary adaptation to this toxin. Our genomic analyses did not reveal evidence of a dramatic past demographic decline in the Carolina parakeet; also, its genome did not exhibit the long runs of homozygosity that are signals of recent inbreeding and are typically found in endangered species. As such, our results suggest its extinction was an abrupt process and thus likely solely attributable to human causes.
  3. Hays GC, Laloë JO, Lee PLM, Schofield G
    Curr Biol, 2023 Jan 09;33(1):R14-R15.
    PMID: 36626854 DOI: 10.1016/j.cub.2022.11.035
    Climate change is a clear and present threat to species survival. For species with temperature-dependent sex determination, including all sea turtles, it has been hypothesised that climate change may drive the creation of sex-ratio biases leading to population extinctions1. Through a global analysis across multiple species, we present the first direct empirical evidence for a demographic consequence of male scarcity in sea turtle populations, with a lower incidence of multiple paternity being found in populations with more extreme female-biased hatchling sex-ratio skews. For green turtles, when the female bias in hatchling sex ratio was >90%, the incidence of multiple paternity was low compared to other nesting sites, being 24.5% in the eastern Mediterranean (Cyprus), 36.4% on Redang Island (Malaysia) and 15.4% on the southern Great Barrier Reef (Heron Island, Australia) compared to higher values (range 61.1-91.7%) at other sites globally. These results suggest that a low incidence of multiple paternity may serve as a harbinger of future problems with egg fertility if males become even scarcer. Assessments of the incidence of multiple paternity at sites where adult males are expected to become scarce, such as Raine Island on the northern Great Barrier Reef in Australia, may help to identify when a lack of males raises the threat of local extinctions. In such cases, intervention to increase the production of male hatchlings may be needed.
  4. Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini MV, Golding N, et al.
    Curr Biol, 2019 Dec 16;29(24):4241-4248.e5.
    PMID: 31761702 DOI: 10.1016/j.cub.2019.11.007
    Dengue has enormous health impacts globally. A novel approach to decrease dengue incidence involves the introduction of Wolbachia endosymbionts that block dengue virus transmission into populations of the primary vector mosquito, Aedes aegypti. The wMel Wolbachia strain has previously been trialed in open releases of Ae. aegypti; however, the wAlbB strain has been shown to maintain higher density than wMel at high larval rearing temperatures. Releases of Ae. aegypti mosquitoes carrying wAlbB were carried out in 6 diverse sites in greater Kuala Lumpur, Malaysia, with high endemic dengue transmission. The strain was successfully established and maintained at very high population frequency at some sites or persisted with additional releases following fluctuations at other sites. Based on passive case monitoring, reduced human dengue incidence was observed in the release sites when compared to control sites. The wAlbB strain of Wolbachia provides a promising option as a tool for dengue control, particularly in very hot climates.
  5. Thompson JJ, Morato RG, Niebuhr BB, Alegre VB, Oshima JEF, de Barros AE, et al.
    Curr Biol, 2021 Aug 09;31(15):3457-3466.e4.
    PMID: 34237270 DOI: 10.1016/j.cub.2021.06.029
    Large terrestrial carnivores have undergone some of the largest population declines and range reductions of any species, which is of concern as they can have large effects on ecosystem dynamics and function.1-4 The jaguar (Panthera onca) is the apex predator throughout the majority of the Neotropics; however, its distribution has been reduced by >50% and it survives in increasingly isolated populations.5 Consequently, the range-wide management of the jaguar depends upon maintaining core populations connected through multi-national, transboundary cooperation, which requires understanding the movement ecology and space use of jaguars throughout their range.6-8 Using GPS telemetry data for 111 jaguars from 13 ecoregions within the four biomes that constitute the majority of jaguar habitat, we examined the landscape-level environmental and anthropogenic factors related to jaguar home range size and movement parameters. Home range size decreased with increasing net productivity and forest cover and increased with increasing road density. Speed decreased with increasing forest cover with no sexual differences, while males had more directional movements, but tortuosity in movements was not related to any landscape factors. We demonstrated a synergistic relationship between landscape-scale environmental and anthropogenic factors and jaguars' spatial needs, which has applications to the conservation strategy for the species throughout the Neotropics. Using large-scale collaboration, we overcame limitations from small sample sizes typical in large carnivore research to provide a mechanism to evaluate habitat quality for jaguars and an inferential modeling framework adaptable to the conservation of other large terrestrial carnivores.
  6. Cai L, Arnold BJ, Xi Z, Khost DE, Patel N, Hartmann CB, et al.
    Curr Biol, 2021 03 08;31(5):1002-1011.e9.
    PMID: 33485466 DOI: 10.1016/j.cub.2020.12.045
    Despite more than 2,000-fold variation in genome size, key features of genome architecture are largely conserved across angiosperms. Parasitic plants have elucidated the many ways in which genomes can be modified, yet we still lack comprehensive genome data for species that represent the most extreme form of parasitism. Here, we present the highly modified genome of the iconic endophytic parasite Sapria himalayana Griff. (Rafflesiaceae), which lacks a typical plant body. First, 44% of the genes conserved in eurosids are lost in Sapria, dwarfing previously reported levels of gene loss in vascular plants. These losses demonstrate remarkable functional convergence with other parasitic plants, suggesting a common genetic roadmap underlying the evolution of plant parasitism. Second, we identified extreme disparity in intron size among retained genes. This includes a category of genes with introns longer than any so far observed in angiosperms, nearing 100 kb in some cases, and a second category of genes with exceptionally short or absent introns. Finally, at least 1.2% of the Sapria genome, including both genic and intergenic content, is inferred to be derived from host-to-parasite horizontal gene transfers (HGTs) and includes genes potentially adaptive for parasitism. Focused phylogenomic reconstruction of HGTs reveals a hidden history of former host-parasite associations involving close relatives of Sapria's modern hosts in the grapevine family. Our findings offer a unique perspective into how deeply angiosperm genomes can be altered to fit an extreme form of plant parasitism and demonstrate the value of HGTs as DNA fossils to investigate extinct symbioses.
  7. Roth S, Balvín O, Siva-Jothy MT, Di Iorio O, Benda P, Calva O, et al.
    Curr Biol, 2019 06 03;29(11):1847-1853.e4.
    PMID: 31104934 DOI: 10.1016/j.cub.2019.04.048
    All 100+ bedbug species (Cimicidae) are obligate blood-sucking parasites [1, 2]. In general, blood sucking (hematophagy) is thought to have evolved in generalist feeders adventitiously taking blood meals [3, 4], but those cimicid taxa currently considered ancestral are putative host specialists [1, 5]. Bats are believed to be the ancestral hosts of cimicids [1], but a cimicid fossil [6] predates the oldest known bat fossil [7] by >30 million years (Ma). The bedbugs that parasitize humans [1, 8] are host generalists, so their evolution from specialist ancestors is incompatible with the "resource efficiency" hypothesis and only partially consistent with the "oscillation" hypothesis [9-16]. Because quantifying host shift frequencies of hematophagous specialists and generalists may help to predict host associations when vertebrate ranges expand by climate change [17], livestock, and pet trade in general and because of the previously proposed role of human pre-history in parasite speciation [18-20], we constructed a fossil-dated, molecular phylogeny of the Cimicidae. This phylogeny places ancestral Cimicidae to 115 mya as hematophagous specialists with lineages that later frequently populated bat and bird lineages. We also found that the clades, including the two major current urban pests, Cimex lectularius and C. hemipterus, separated 47 mya, rejecting the notion that the evolutionary trajectories of Homo caused their divergence [18-21]. VIDEO ABSTRACT.
  8. Schöner MG, Schöner CR, Simon R, Grafe TU, Puechmaille SJ, Ji LL, et al.
    Curr Biol, 2015 Jul 20;25(14):1911-6.
    PMID: 26166777 DOI: 10.1016/j.cub.2015.05.054
    Mutualisms between plants and animals shape the world's ecosystems. In such interactions, achieving contact with the partner species is imperative. Plants regularly advertise themselves with signals that specifically appeal to the partner's perceptual preferences. For example, many plants have acquired traits such as brightly colored, fragrant flowers that attract pollinators with visual, olfactory, or--in the case of a few bat-pollinated flowers--even acoustic stimuli in the form of echo-reflecting structures. However, acoustic attraction in plants is rare compared to other advertisements and has never been found outside the pollination context and only in the Neotropics. We hypothesized that this phenomenon is more widespread and more diverse as plant-bat interactions also occur in the Paleotropics. In Borneo, mutualistic bats fertilize a carnivorous pitcher plant while roosting in its pitchers. The pitcher's orifice features a prolonged concave structure, which we predicted to distinctively reflect the bats' echolocation calls for a wide range of angles. This structure should facilitate the location and identification of pitchers even within highly cluttered surroundings. Pitchers lacking this structure should be less attractive for the bats. Ensonifications of the pitchers around their orifice revealed that this structure indeed acts as a multidirectional ultrasound reflector. In behavioral experiments where bats were confronted with differently modified pitchers, the reflector's presence clearly facilitated the finding and identification of pitchers. These results suggest that plants have convergently acquired reflectors in the Paleotropics and the Neotropics to acoustically attract bats, albeit for completely different ecological reasons.
  9. Holzner A, Mohd Rameli NIA, Ruppert N, Widdig A
    Curr Biol, 2024 Jan 22;34(2):410-416.e4.
    PMID: 38194972 DOI: 10.1016/j.cub.2023.12.002
    Infant survival is a major determinant of individual fitness and constitutes a crucial factor in shaping species' ability to maintain viable populations in changing environments.1 Early adverse conditions, such as maternal loss, social isolation, and ecological hazards, have been associated with reduced rates of infant survivorship in wild primates.2,3,4 Agricultural landscapes increasingly replacing natural forest habitats may additionally threaten the survival of infants through exposure to novel predators,5 human-wildlife conflicts,6,7 or the use of harmful chemicals.8,9 Here, we investigated potential links between agricultural habitat use and high infant mortality in wild southern pig-tailed macaques (Macaca nemestrina) inhabiting a mosaic landscape of rainforest and oil palm plantation in Peninsular Malaysia. Longitudinal data revealed that 57% of all infants born during the study period (2014-2023) died before the age of 1 year, far exceeding mortality rates reported for other wild primates.10,11,12,13,14 Importantly, prolonged time spent in the plantation during infancy decreased the likelihood of infant survival by 3-fold, likely caused by increased exposure to the threats inherent to this environment. Further, mortality risk was elevated for infants born to primiparous mothers and predicted by prolonged maternal interbirth intervals, suggesting potential long-term effects attributed to the uptake and/or accumulation of pesticides in mothers' bodies.15,16,17 Indeed, existing literature reports that pesticides may cross the placental barrier, thus impacting fetal development during pregnancy.18,19,20 Our findings emphasize the importance of minimizing anthropogenic threats to wildlife in agricultural landscapes by establishing environmentally friendly cultivation practices that can sustain wildlife populations in the long term.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links