Displaying publications 21 - 40 of 119 in total

Abstract:
Sort:
  1. Karami A, Groman DB, Wilson SP, Ismail P, Neela VK
    Environ Pollut, 2017 Apr;223:466-475.
    PMID: 28129952 DOI: 10.1016/j.envpol.2017.01.047
    There are serious concerns over the adverse impacts of microplastics (MPs) on living organisms. The main objective of this study was to test the effects of MPs on the total length, weight, condition factor (CF), transcriptional level of antioxidant, anti and pro-apoptotic, and neurotransmitter genes, and the histopathology of the gill, liver, brain, kidney, and intestine in the larvae of zebrafish (Danio rerio). Fish were exposed to one of three levels of pristine low-density polyethylene (LDPE) fragments (5, 50, or 500 μg/L) for 10 or 20 days. No significant changes were observed in any of the selected biomarkers across MP concentrations at days 10 or 20. The expression of casp9 (caspase 9, apoptosis-related cysteine protease), casp3a (caspase 3, apoptosis-related cysteine protease a) and cat (catalase), however, were significantly lower in the larvae sampled at day 20 than day 10. We provide evidence that virgin short-term exposure to LDPE fragments has minimal impact on biomarker responses in D. rerio larvae.
  2. Ratnasari A, Syafiuddin A, Zaidi NS, Hong Kueh AB, Hadibarata T, Prastyo DD, et al.
    Environ Pollut, 2022 Jan 01;292(Pt B):118474.
    PMID: 34763013 DOI: 10.1016/j.envpol.2021.118474
    The emergence and continual accumulation of industrial micropollutants such as dyes, heavy metals, organic matters, and pharmaceutical active compounds (PhACs) in the ecosystem pose an alarming hazard to human health and the general wellbeing of global flora and fauna. To offer eco-friendly solutions, living and non-living algae have lately been identified and broadly practiced as promising agents in the bioremediation of micropollutants. The approach is promoted by recent findings seeing better removal performance, higher efficiency, surface area, and binding affinity of algae in various remediation events compared to bacteria and fungi. To give a proper and significant insight into this technology, this paper comprehensively reviews its current applications, removal mechanisms, comparative efficacies, as well as future outlooks and recommendations. In conducting the review, the secondary data of micropollutants removal have been gathered from numerous sources, from which their removal performances are analyzed and presented in terms of strengths, weaknesses, opportunities, and threats (SWOT), to specifically examine their suitability for selected micropollutants remediation. Based on kinetic, isotherm, thermodynamic, and SWOT analysis, non-living algae are generally more suitable for dyes and heavy metals removal, meanwhile living algae are appropriate for removal of organic matters and PhACs. Moreover, parametric effects on micropollutants removal are evaluated, highlighting that pH is critical for biodegradation activity. For selective pollutants, living and non-living algae show recommendable prospects as agents for the efficient cleaning of industrial wastewaters while awaiting further supporting discoveries in encouraging technology assurance and extensive applications.
  3. Mahpudz A, Lim SL, Inokawa H, Kusakabe K, Tomoshige R
    Environ Pollut, 2021 Aug 24;290:117990.
    PMID: 34523515 DOI: 10.1016/j.envpol.2021.117990
    Catalytic hydrolysis of sodium borohydride (NaBH4) is a promising method to provide clean hydrogen (H2) energy for portable devices. Therefore, designing a non-noble metal catalyst that performs well in this hydrolysis is essential. Cobalt-nanoparticles (Co-NPs) supported on magnesium-aluminium layered double hydroxide (LDH) with various mean diameter were synthesized by changing concentration of cobalt-citrate anion (Co-citrate) precursor used for ion exchange with the LDH host. Then the Co-citrate intercalated LDHs were reduced with NaBH4 to form Co-NPs. Evidence of successful intercalation was shown by X-ray diffraction (XRD) and Fourier-Transform Infrared spectroscopy (FT-IR). Transmission Electron Microscope (TEM) and Scanning TEM (STEM) observations revealed that Co-NPs were in metallic state and their mean diameter increased with the concentration of Co-citrate solution. Nitrogen physisorption isotherms showed that the surface structure of LDHs transformed from non-porous to mesoporous after chemical reduction, which indicated that the Co-NPs were formed in the interlayer of LDHs. Catalytic hydrolysis of NaBH4 at 25 °C clarified that the catalyst synthesized from 6 mM Co-citrate solution showed the highest H2 generation rate of 4520 ± 251 mL min-1·gCo-1, indicating the catalyst had the optimum size of Co-NP. This activity could be considered relatively higher compared to unsupported cobalt and many other supported cobalt-base catalysts previously reported. It was also clearly shown that size of Co-NPs supported on LDH could be a significant parameter as it allowed better accessibility of reactants to the active catalyst surface to obtain maximum activity. For this optimum catalyst, the activation energy was evaluated to be 56.9 kJ mol-1. Although the catalyst was able to achieve almost the same conversion when the catalyst was repeatedly tested five times under the same condition, the catalytic activity decreased gradually. Overall, it could be revealed that Co-NPs supported on LDHs have a huge potential to be used for H2 energy production.
  4. Xie Z, Li Y, Xiong K, Tu Z, Waiho K, Yang C, et al.
    Environ Pollut, 2023 Aug 15;331(Pt 2):121921.
    PMID: 37263564 DOI: 10.1016/j.envpol.2023.121921
    Anthropologic activities caused frequent eutrophication in coastal and estuarine waters, resulting in diel-cycling hypoxia. Given global climate change, extreme weather events often occur, thus salinity fluctuation frequently breaks out in these waters. This study aimed to evaluate the combined effects of salinity and hypoxia on intestinal microbiota and digestive enzymes of Crassostrea hongkongensis. Specifically, we sequenced 16 S rRNA of intestinal microbiota and measured the digestive enzymes trypsin (TRS), lipase (LPS) and amylase (AMY) in oysters exposed for 28 days to three salinities (10, 25 and 35) and two dissolved oxygen conditions, normoxia (6 mg/L) and hypoxia (6 mg/L for 12 h, 2 mg/L for 12 h). Oysters in normoxia and salinity of 25 were treated as control. After 28-day exposure, for microbial components, Fusobacteriota, Firmicutes, Bacteroidota, Proteobacteria and Actinobacteriota comprised the majority for all experimental groups. Compared with the control group, the diversity and structure of intestinal microbiota tended to change in all treated groups. The species richness in C. hongkongensis intestine also changed. It was the most significant that high salinity increased Proteobacteria proportion while low salinity and hypoxia increased Fusobacteriota but decreased Proteobacteria, respectively. Additionally, Actinobacteriota was sensitive and changed under environmental stressor (P 
  5. Jathar LD, Ganesan S, Awasarmol U, Nikam K, Shahapurkar K, Soudagar MEM, et al.
    Environ Pollut, 2023 Jun 01;326:121474.
    PMID: 36965686 DOI: 10.1016/j.envpol.2023.121474
    Recently, solar photovoltaic (PV) technology has shown tremendous growth among all renewable energy sectors. The attractiveness of a PV system depends deeply of the module and it is primarily determined by its performance. The quantity of electricity and power generated by a PV cell is contingent upon a number of parameters that can be intrinsic to the PV system itself, external or environmental. Thus, to improve the PV panel performance and lifetime, it is crucial to recognize the main parameters that directly influence the module during its operational lifetime. Among these parameters there are numerous factors that positively impact a PV system including the temperature of the solar panel, humidity, wind speed, amount of light, altitude and barometric pressure. On the other hand, the module can be exposed to simultaneous environmental stresses such as dust accumulation, shading and pollution factors. All these factors can gradually decrease the performance of the PV panel. This review not only provides the factors impacting PV panel's performance but also discusses the degradation and failure parameters that can usually affect the PV technology. The major points include: 1) Total quantity of energy extracted from a photovoltaic module is impacted on a daily, quarterly, seasonal, and yearly scale by the amount of dust formed on the surface of the module. 2) Climatic conditions as high temperatures and relative humidity affect the operation of solar cells by more than 70% and lead to a considerable decrease in solar cells efficiency. 3) The PV module current can be affected by soft shading while the voltage does not vary. In the case of hard shadowing, the performance of the photovoltaic module is determined by whether some or all of the cells of the module are shaded. 4) Compared to more traditional forms of energy production, PV systems offer a significant number of advantages to the environment. Nevertheless, these systems can procure greenhouse gas emissions, especially during the production stages. In conclusion, this study underlines the importance of considering multiple parameters while evaluating the performance of photovoltaic modules. Environmental factors can have a major impact on the performance of a PV system. It is critical to consider these factors, as well as intrinsic and other intermediate factors, to optimize the performance of solar energy systems. In addition, continuous monitoring and maintenance of PV systems is essential to ensure maximum efficiency and performance.
  6. Sudaryanto A, Takahashi S, Iwata H, Tanabe S, Ismail A
    Environ Pollut, 2004 Aug;130(3):347-58.
    PMID: 15182968
    Concentration of butyltin compounds (BTs), including tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT) and total tin (SigmaSn) were determined in green mussel (Perna viridis), 10 species of muscle fish and sediment from coastal waters of Malaysia. BTs were detected in all these samples ranging from 3.6 to 900 ng/g wet wt., 3.6 to 210 ng/g wet wt., and 18 to 1400 ng/g dry wt. for mussels, fish and sediments, respectively. The concentrations of BTs in several locations of this study were comparable with the reported values from some developed countries and highest among Asian developing nations. Considerable concentration of BTs in several locations might have ecotoxicological consequences and may cause concern to human health. The parent compound TBT was found to be highest than those of its degradation compounds, DBT and MBT, suggesting recent input of TBT to the Malaysian marine environment. Significant positive correlation (Spearman rank correlation: r2=0.82, P<0.0001) was found between BTs and SigmaSn, implying considerable anthropogenic input of butyltin compounds to total tin contamination levels. Enormous boating activities may be a major source of BTs in this country, although aquaculture activities may not be ignored.
  7. Xu D, Yang L, Zhao M, Zhang J, Syed-Hassan SSA, Sun H, et al.
    Environ Pollut, 2021 Feb 01;270:116120.
    PMID: 33341552 DOI: 10.1016/j.envpol.2020.116120
    Understanding the migration and conversion of nitrogen in wood-based panels (WBPs) during pyrolysis is fundamentally important for potentially transforming the N-containing species into valuable material-based products. This review firstly summarizes the commonly used methods for examining N evolution during the WBPs pyrolysis before probing into the association between the wood and adhesives.The potential effects of wood-adhesive interaction on the pyrolysis process are subsequently analyzed. Furthermore, the controversial statements from literature on the influence of adhesives on wood pyrolysis behavior are discussed, which is followed by the detailed investigation into the distribution and evolution of N-containing species in gas, liquid and char, respectively, during WBPs pyrolysis in recent studies. The differences in N species due to the heating sources (i.e. electrical heating vs microwave heating) are particularly compared. Finally, based on the characteristics of staged pyrolysis, co-pyrolysis and catalytic pyrolysis, the converting pathways for WBPs are proposed with an emphasis on the production of value-added chemicals and carbon materials, simultaneously mitigating NOx emission.
  8. Kataria N, Bhushan D, Gupta R, Rajendran S, Teo MYM, Khoo KS
    Environ Pollut, 2022 Dec 15;315:120319.
    PMID: 36183872 DOI: 10.1016/j.envpol.2022.120319
    Bisphenol-A (BPA) is a type of endocrine disrupting compound (EDC) that is being widely used in the production of polycarbonate and epoxy resins. In the last few years, human exposure to BPA has been extensively high due to the continuous increment in the Annual Growth Rate (AGR) of the BPA global market. The presence and transportation of BPA in the environment could cause serious damage to aquatic life and human health. This paper reviewed the literature on the exposure and toxicity mechanisms of BPA and advanced analytical techniques for the detection of BPA in the environment and human beings. The study indicated that BPA can cause damaging effects on numerous tissues and organs, including the reproductive system, metabolic dysfunction, respiratory system, immune system and central nervous system. On the basis of reported studies on animals, it appears that the exposure of BPA can be carcinogenic and responsible for causing a variety of cancers like ovarian cancer, uterine cancer, prostate cancer, testicular cancer, and liver cancer. This review paper focused mainly on the current progress in BPA removal technologies within last ten years (2012-2022). This paper presents a comprehensive overview of individual removal technologies, including adsorption, photocatalysis/photodegradation, ozonation/advance oxidation, photo-fenton, membranes/nanofilters, and biodegradation, along with removal mechanisms. The extensive literature study shows that each technology has its own removal mechanism and their respective limitations in BPA treatment. In adsorption and membrane separation process, most of BPA has been treated by electrostatic interaction, hydrogen boning and π-π interations mechanism. Whereas in the degradation mechanism, O* and OH* species have played a major role in BPA removal. Some factors could alter the removal potential and efficiency of BPA removal. This review paper will provide a useful guide in providing directions for future investigation to address the problem of BPA-containing wastewater treatment.
  9. He Y, Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Gupta VK, Peng W, Lam SS, et al.
    Environ Pollut, 2024 Feb 01;342:123081.
    PMID: 38072018 DOI: 10.1016/j.envpol.2023.123081
    E-waste, encompassing discarded materials from outdated electronic equipment, often ends up intermixed with municipal solid waste, leading to improper disposal through burial and incineration. This improper handling releases hazardous substances into water, soil, and air, posing significant risks to ecosystems and human health, ultimately entering the food chain and water supply. Formal e-waste recycling, guided by circular economy models and zero-discharge principles, offers potential solutions to this critical challenge. However, implementing a circular economy for e-waste management due to chemical and energy consumption may cause environmental impacts. Consequently, advanced sustainability assessment tools, such as Life Cycle Assessment (LCA), have been applied to investigate e-waste management strategies. While LCA is a standardized methodology, researchers have employed various routes for environmental assessment of different e-waste management methods. However, to the authors' knowledge, there lacks a comprehensive study focusing on LCA studies to discern the opportunities and limitations of this method in formal e-waste management strategies. Hence, this review aims to survey the existing literature on the LCA of e-waste management under a circular economy, shedding light on the current state of research, identifying research gaps, and proposing future research directions. It first explains various methods of managing e-waste in the circular economy. This review then evaluates and scrutinizes the LCA approach in implementing the circular bioeconomy for e-waste management. Finally, it proposes frameworks and procedures to enhance the applicability of the LCA method to future e-waste management research. The literature on the LCA of e-waste management reveals a wide variation in implementing LCA in formal e-waste management, resulting in diverse results and findings in this field. This paper underscores that LCA can pinpoint the environmental hotspots for various pathways of formal e-waste recycling, particularly focusing on metals. It can help address these concerns and achieve greater sustainability in e-waste recycling, especially in pyrometallurgical and hydrometallurgical pathways. The recovery of high-value metals is more environmentally justified compared to other metals. However, biometallurgical pathways remain limited in terms of environmental studies. Despite the potential for recycling e-waste into plastic or glass, there is a dearth of robust background in LCA studies within this sector. This review concludes that LCA can offer valuable insights for decision-making and policy processes on e-waste management, promoting environmentally sound e-waste recycling practices. However, the accuracy of LCA results in e-waste recycling, owing to data requirements, subjectivity, impact category weighting, and other factors, remains debatable, emphasizing the need for more uncertainty analysis in this field.
  10. Hashiguchi Y, Zakaria MR, Toshinari M, Mohd Yusoff MZ, Shirai Y, Hassan MA
    Environ Pollut, 2021 May 15;277:116780.
    PMID: 33640825 DOI: 10.1016/j.envpol.2021.116780
    Most palm oil mills adopted conventional ponding system, including anaerobic, aerobic, facultative and algae ponds, for the treatment of palm oil mill effluent (POME). Only a few mills installed a bio-polishing plant to treat POME further before its final discharge. The present study aims to determine the quality and toxicity levels of POME final discharge from three different mills by using conventional chemical analyses and fish (Danio rerio) embryo toxicity (FET) test. The effluent derived from mill A which installed with a bio-polishing plant had lower values of BOD, COD and TSS at 45 mg/L, 104 mg/L, and 27 mg/L, respectively. Only mill A nearly met the industrial effluent discharge standard for BOD. In FET test, effluent from mill A recorded low lethality and most of the embryos were malformed after hatching (half-maximal effective concentration (EC50) = 20%). The highest toxicity was observed from the effluent of mill B and all embryos were coagulated after 24 h in samples greater than 75% of effluent (38% of half-maximal lethal concentration (LC50) at 96 h). The embryos in the effluent from mill C recorded high mortality after hatching, and the survivors were malformed after 96 h exposure (LC50 = 26%). Elemental analysis of POME final discharge samples showed Cu, Zn, and Fe concentrations were in the range of 0.10-0.32 mg/L, 0.01-0.99 mg/L, and 0.94-4.54 mg/L, respectively and all values were below the effluent permissible discharge limits. However, the present study found these metals inhibited D. rerio embryonic development at 0.12 mg/L of Cu, and 4.9 mg/L of Fe for 96 h-EC50. The present study found that bio-polishing plant installed in mill A effectively removing pollutants especially BOD and the FET test was a useful method to monitor quality and toxicity of the POME final discharge samples.
  11. Liu B, Yang L, Shi J, Zhang S, Yalçınkaya Ç, Alshalif AF
    Environ Pollut, 2023 Jan 15;317:120839.
    PMID: 36493937 DOI: 10.1016/j.envpol.2022.120839
    Stabilizing/solidificating municipal solid waste incineration fly ash (MIFA) with cement is a common strategy, and it is critical to study the high-value utilization of MIFA in ordinary Portland cement (OPC) components. With this aim, binary-binding-system mortar was produced by partially replacing OPC (∼50%) with MIFA, and the effects of different curing regimes (steam curing and carbonation curing) on the properties of the cement mortar were studied. The results showed that the setting time of the cement paste was shorten with the increase of MIFA content, and steam curing accelerated the hardening of the mixture. Although the incorporation of MIFA reduced the strength of the mortar, compared to conventional curing method, steam curing and carbonation curing increased the 3-d strength of the mortar. For high-volume MIFA mortars, the CO2-cured samples had the highest long-term strength and lowest permeability. The incorporation of MIFA increased the initial porosity of the mortar, thereby significantly increasing the carbonation degree and crystallinity of the reaction product - CaCO3. Steam curing also further narrowed the difference in the hydration degree between MIFA-modified sample and plain paste, which may be due to the enhanced hydraulic reactivity of MIFA at high temperatures. Although the incorporation of MIFA increased the porosity of the mortar, this waste-derived SCM refined the bulk pore structure and decreased the interconnected porosity. Additionally, the heavy metal leaching contents of MIFA-modified mortars were all below 1%, which meet the requirements of Chinese standards. Compared with standard curing, steam curing and carbonation curing made the early-age and long-term performance of MIFA-modified mortar better, which can promote the efficient application of MIFA in OPC products.
  12. Mehdizadeh H, Jia X, Mo KH, Ling TC
    Environ Pollut, 2021 Jul 01;280:116914.
    PMID: 33774540 DOI: 10.1016/j.envpol.2021.116914
    Recently, the use of accelerated carbonation curing has attracted wide attention as a promising method to reduce carbon dioxide (CO2) emission and improve the mechanical properties of cement-based materials. However, the diffusion mechanism of CO2 in the matrix and the content of hydration products are the key factors that restrict the carbonation reaction rate. To understand the combined behavior of hydration and carbonation reactions, this paper investigates the influence of cement hydration induced by water-to-cement ratio (w/c) (ranging from 0.25 to 0.45) on microstructure and microhardness properties of cement paste. The experimental results demonstrated that carbonation only occurred at the surface layer of cement paste samples and carbonation efficiency was significantly influenced by greater hydration due to higher w/c. The carbonation depth of the sample with 0.45 w/c was about 6 times higher than that of sample with 0.25 w/c after 28 days of CO2 curing. XRD results revealed that calcite-type calcium carbonate is the main carbonation product and consumption of clinker phases (C2S and C3S) during the hydration enhanced the calcite precipitation in the pores of the surface layer. According to FTIR, with increasing w/c, the position of Si-O-Si stretching bond of the carbonated surface changed from Q2 to Q3, confirming the formation of amorphous silica-rich gel, along with the appearance of CO32- bonds related to calcite. In overall, the micro-mechanical analysis in this study showed that the carbonation significantly improved the surface microhardness of cement paste samples, while the refinement of capillary pores due to carbonation also decreased the negative impact of large pores formed in the matrix of cement paste prepared with high w/c.
  13. Romano N, Ashikin M, Teh JC, Syukri F, Karami A
    Environ Pollut, 2018 Jun;237:1106-1111.
    PMID: 29157968 DOI: 10.1016/j.envpol.2017.11.040
    Silver barb Barbodes gonionotus fry were exposed to polyvinyl chloride (PVC) fragments at increasing concentrations of 0.2, 0.5 and 1.0 mg/L for 96 h, following which whole body histological evaluation and analysis of the digestive enzymes trypsin and chymotrypsin were performed. Whole body trypsin and chymotrypsin activities increased significantly in fish exposed to 0.5 and 1.0 mg/L PVC as compared those exposed to zero or 0.2 mg/L PVC. In fish exposed to all tested concentrations, PVCs were observed in both the proximal and distal intestine, and fish exposed to 0.5-1.0 and 1.0 mg/L PVC, respectively, and these particles were associated with localized thickening of the mucosal epithelium. No tissue damage was evident in any other internal organs or gills. This lack of damage may be attributed to the absence of contaminants associated with the PVC fragments and their relatively smooth surface. The increased whole body trypsin and chymotrypsin activities may indicate an attempt to enhance digestion to compensate for epithelial thickening of the intestine and/or to digest the plastics.
  14. Ma J, Ma NL, Fei S, Liu G, Wang Y, Su Y, et al.
    Environ Pollut, 2024 Apr 01;346:123646.
    PMID: 38402938 DOI: 10.1016/j.envpol.2024.123646
    Stover and manure are the main solid waste in agricultural industry. The generation of stover and manure could lead to serious environmental pollution if not handled properly. Composting is the potential greener solution to remediate and reduce agricultural solid waste, through which stover and manure could be remediated and converted into organic fertilizer, but the long composting period and low efficiency of humic substance production are the key constraints in such remediation approach. In this study, we explore the effect of lignocellulose selective removal on composting by performing chemical pretreatment on agricultural waste followed by utilization of biochar to assist in the remediation by co-composting treatment and reveal the impacts of different lignocellulose component on organic fertilizer production. Aiming to discover the key factors that influence humification during composting process and improve the composting quality as well as comprehensive utilization of agricultural solid waste. The results demonstrated that the removal of selective lignin or hemicellulose led to the shift of abundances lignocellulose-degrading bacteria, which in turn accelerated the degradation of lignocellulose by almost 51.2%. The process also facilitated the remediation of organic waste via humification and increased the humic acid level and HA/FA ratio in just 22 days. The richness of media relies on their lignocellulose content, which is negatively correlated with total nitrogen content, humic acid (HA) content, germination index (GI), and pH, but positively correlated with fulvic acid (FA) and total organic carbon (TOC). The work provides a potential cost effective and efficient framework for agricultural solid waste remediation and reduction.
  15. Thalib YA, Razali RS, Mohamad S, Zainuddin R', Rahmah S, Ghaffar MA, et al.
    Environ Pollut, 2021 Feb 15;271:116375.
    PMID: 33422747 DOI: 10.1016/j.envpol.2020.116375
    Rising of temperature in conjunction with acidification due to the anthropogenic climates has tremendously affected all aquatic life. Small changes in the surrounding environment could lead to physiological constraint in the individual. Therefore, this study was designed to investigate the effects of warm water temperature (32 °C) and low pH (pH 6) on physiological responses and growth of hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) juveniles for 25 days. Growth performance was significantly affected under warm water temperature and low-pH conditions. Surprisingly, the positive effect on growth was observed under the interactive effects of warm water and low pH exposure. Hybrid grouper exposed to the interactive stressor of warm temperature and low pH exhibited higher living cost, where HSI content was greatly depleted to about 2.3-folds than in normal circumstances. Overall, challenge to warm temperature and low pH induced protein mobilization as an energy source followed by glycogen and lipid to support basal metabolic needs.
  16. Nhu TT, Schaubroeck T, Henriksson PJG, Bosma R, Sorgeloos P, Dewulf J
    Environ Pollut, 2016 Dec;219:156-165.
    PMID: 27814531 DOI: 10.1016/j.envpol.2016.10.006
    Pangasius production in Vietnam is widely known as a success story in aquaculture, the fastest growing global food system because of its tremendous expansion by volume, value and the number of international markets to which Pangasius has been exported in recent years. While certification schemes are becoming significant features of international fish trade and marketing, an increasing number of Pangasius producers have followed at least one of the certification schemes recognised by international markets to incorporate environmental and social sustainability practices in aquaculture, typically the Pangasius Aquaculture Dialogue (PAD) scheme certified by the Aquaculture Stewardship Council (ASC). An assessment of the environmental benefit of applying certification schemes on Pangasius production, however, is still needed. This article compared the environmental impact of ASC-certified versus non-ASC certified intensive Pangasius aquaculture, using a statistically supported LCA. We focused on both resource-related (water, land and total resources) and emissions-related (global warming, acidification, freshwater and marine eutrophication) categories. The ASC certification scheme was shown to be a good approach for determining adequate environmental sustainability, especially concerning emissions-related categories, in Pangasius production. However, the non-ASC certified farms, due to the large spread, the impact (e.g., water resources and freshwater eutrophication) was possibly lower for a certain farm. However, this result was not generally prominent. Further improvements in intensive Pangasius production to inspire certification schemes are proposed, e.g., making the implementation of certification schemes more affordable, well-oriented and facilitated; reducing consumed feed amounts and of the incorporated share in fishmeal, especially domestic fishmeal, etc. However, their implementation should be vetted with key stakeholders to assess their feasibility.
  17. Lee CC, Tran MV, Choo CW, Tan CP, Chiew YS
    Environ Pollut, 2020 Oct;265(Pt A):115058.
    PMID: 32806396 DOI: 10.1016/j.envpol.2020.115058
    Due to the increase of the human population and the rapid industrial growth in the past few decades, air quality monitoring is essential to assess the pollutant levels of an area. However, monitoring air quality in a high-density area like Sunway City, Selangor, Malaysia is challenging due to the limitation of the local monitoring network. To establish a comprehensive data for air pollution in Sunway City, a mobile monitoring campaign was employed around the city area with a duration of approximately 6 months, from September 2018 to March 2019. Measurements of air pollutants such as carbon dioxide (CO2) and nitrogen dioxide (NO2) were performed by using mobile air pollution sensors facilitated with a GPS device. In order to acquire a more in-depth understanding on traffic-related air pollution, the measurement period was divided into two different time blocks, which were morning hours (8 a.m.-12 p.m.) and afternoon hours (3 p.m.-7 p.m.). The data set was analysed by splitting Sunway City into different zones and routes to differentiate the conditions of each region. Meteorological variables such as ambient temperature, relative humidity, and wind speed were studied in line with the pollutant concentrations. The air quality in Sunway City was then compared with various air quality standards such as Malaysian Air Quality Standards and World Health Organisation (WHO) guidelines to understand the risk of exposure to air pollution by the residence in Sunway City.
  18. Kong Y, Ma NL, Yang X, Lai Y, Feng Z, Shao X, et al.
    Environ Pollut, 2020 Oct;265(Pt A):114951.
    PMID: 32554093 DOI: 10.1016/j.envpol.2020.114951
    Greenhouse gases (GHGs) carbon dioxide (CO2) and nitrous oxide (N2O), contribute significantly to global warming, and they have increased substantially over the years. Reforestation is considered as an important forestry application for carbon sequestration and GHGs emission reduction, however, it remains unknown whether reforestation may instead produce too much CO2 and N2O contibuting to GHGs pollution. This study was performed to characterize and examine the CO2 and N2O emissions and their controlling factors in different species and types of pure and mixture forest used for reforestation. Five soil layers from pure forest Platycladus orientalis (PO), Robinia pseudoacacia (RP), and their mixed forest P-R in the Taihang mountains of central China were sampled and incubated aerobically for 11 days. The P-R soil showed lower CO2 and N2O production potentials than those of the PO soils (P 
  19. Sabrina J, Nurulhuda K, Amin AM, Sulaiman MF, Man HC
    Environ Pollut, 2022 Dec 15;315:120282.
    PMID: 36174812 DOI: 10.1016/j.envpol.2022.120282
    Studies have indicated that up to 47% of total N fertilizer applied in flooded rice fields may be lost to the atmosphere through NH3 volatilization. The volatilized NH3 represents monetary loss and contributes to increase in formation of PM2.5 in the atmosphere, eutrophication in surface water, and degrades water and soil quality. The NH3 is also a precursor to N2O formation. Thus, it is important to monitor NH3 volatilization from fertilized and flooded rice fields. Commercially available samplers offer ease of transportation and installation, and thus, may be considered as NH3 absorbents for the static chamber method. Hence, the objective of this study is to investigate the use of a commercially available NH3 sampler/absorbent (i.e., Ogawa® passive sampler) for implementation in a static chamber. In this study, forty closed static chambers were used to study two factors (i.e., trapping methods, exposure duration) arranged in a Randomized Complete Block Design. The three trapping methods are standard boric acid solution, Ogawa® passive sampler with acid-coated pads and exposed coated pads without casing. The exposure durations are 1 and 4 h. Results suggest that different levels of absorbed NH3 was obtained for each of the trapping methods. Highest level of NH3 was trapped by the standard boric acid solution, followed by the exposed acid-coated pads without casing, and finally acid-coated pads with protective casing, given the same exposure duration. The differences in absorbed NH3 under same conditions does not warrant direct comparison across the different trapping methods. Any three trapping methods can be used for conducting studies to compare multi-treatments using the static chamber method, provided the same trapping method is applied for all chambers.
  20. Agusa T, Kunito T, Sudaryanto A, Monirith I, Kan-Atireklap S, Iwata H, et al.
    Environ Pollut, 2007 Feb;145(3):766-77.
    PMID: 16828209
    Concentrations of 20 trace elements were determined in muscle and liver of 34 species of marine fish collected from coastal areas of Cambodia, Indonesia, Malaysia and Thailand. Large regional difference was observed in the levels of trace elements in liver of one fish family (Carangidae): the highest mean concentration was observed in fish from the Malaysian coastal waters for V, Cr, Zn, Pb and Bi and those from the Java Sea side of Indonesia for Sn and Hg. To assess the health risk to the Southeast Asian populations from consumption of fish, intake rates of trace elements were estimated. Some marine fish showed Hg levels higher than the guideline values by U.S. Environmental Protection Agency and Joint FAO/WHO Expert Committee on Food Additives (JECFA). This suggests that consumption of these fish may be hazardous to the people.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links