Displaying publications 21 - 40 of 92 in total

Abstract:
Sort:
  1. Cai ZY, Niu ZY, Zhang YY, Tong YH, Vu TC, Goh WL, et al.
    Front Plant Sci, 2023;14:1274337.
    PMID: 38111884 DOI: 10.3389/fpls.2023.1274337
    Neomicrocalamus and Temochloa are closely related to bamboo genera. However, when considered with newly discovered and morphologically similar material from China and Vietnam, the phylogenetic relationship among these three groups was ambiguous in the analyses based on DNA regions. Here, as a means of investigating the relationships among the three bamboo groups and exploring potential sources of genomic conflicts, we present a phylogenomic examination based on the whole plastome, single-nucleotide polymorphism (SNP), and single-copy nuclear (SCN) gene datasets. Three different phylogenetic hypotheses were found. The inconsistency is attributed to the combination of incomplete lineage sorting and introgression. The origin of newly discovered bamboos is from introgressive hybridization between Temochloa liliana (which contributed 80.7% of the genome) and Neomicrocalamus prainii (19.3%), indicating that the newly discovered bamboos are closer to T. liliana in genetics. The more similar morphology and closer distribution elevation also imply a closer relationship between Temochloa and newly discovered bamboos.
  2. Khoo YW, Chong KP
    Front Plant Sci, 2023;14:1156869.
    PMID: 37492765 DOI: 10.3389/fpls.2023.1156869
    Ganoderma boninense (G. boninense) is a soil-borne fungus threatening oil palm at the present. It causes basal stem rot disease on oil palm. Within six months, this fungus can cause an oil palm plantation to suffer a significant 43% economic loss. The high persistence and nature of spread of G. boninense in soil make control of the disease challenging. Therefore, controlling the pathogen requires a thorough understanding of the mechanisms that underlie pathogenicity as well as its interactions with host plants. In this paper, we present the general characteristics, the pathogenic mechanisms, and the host's defensive system of G. boninense. We also review upcoming and most promising techniques for disease management that will have the least negative effects on the environment and natural resources.
  3. Mantiquilla JA, Shiao MS, Lu HY, Sridith K, Sidique SNM, Liyanage WK, et al.
    Front Plant Sci, 2022;13:1038998.
    PMID: 36388479 DOI: 10.3389/fpls.2022.1038998
    Nipa (Nypa fruticans Wurmb.) is an important mangrove palm species, but it is understudied due to lack of information on genetic patterns within its distribution range. In this study, we identified 18 informative microsatellite markers to assess genetic variations among local populations in the Indo-West Pacific (IWP). Results showed population stratification based on high genetic differentiation (FST = 0.22131) with the Mantel test indicating significance to isolation-by-distance. We found a pronounced differentiation between the west populations in Sri Lanka and east populations in Southeast Asia. The east populations around the South China Sea were more genetically similar than those along the Malacca Strait and Java Sea. These genetic clines were shaped by ocean circulations and seasonal monsoon reversals as plausible factors. The Malacca Strait was confirmed as both a genetic and a geographic barrier rather than a corridor according to the Monmonier plot. Simulations of directional migration indicated a statistically strong contemporary genetic connectivity from west to east where Sri Lankan immigrants were detected as far as central Philippines via long-distance dispersal. This is the first report on the recent migration patterns of nipa using microsatellites. Assignment of first-generation (F0) immigrants suggested Mainland Southeast Asia as a melting pot due to the admixture associated with excess of homozygosity. The western populations were recent expansions that emerged in rapid succession based on a phylogram as supported by footprints of genetic drift based on bottleneck tests.
  4. Srivastava P, Sahgal M, Sharma K, Enshasy HAE, Gafur A, Alfarraj S, et al.
    Front Plant Sci, 2022;13:984522.
    PMID: 36438130 DOI: 10.3389/fpls.2022.984522
    Siderophore-positive bacteria present in the rhizosphere and in bulk soil assist plants by either inhibiting phytopathogen proliferation or increasing plant growth. The bacterial diversity of the Shisham forest ecosystem in the Tarai region of the Western Himalayas was studied and used for siderophore production, taking into account the large-scale dieback and wilt-induced mortality in Dalbergia sissoo (common name: shisham) plantation forests and the importance of soil microbes in tree health. In addition, Pseudomonas, Burkholderia, and Streptomyces were prominent siderophore-positive bacteria in Shisham forests. Pseudomonas species are known for their remarkable siderophore-producing ability. Bacterial siderophores inhibit pathogen growth by rapidly lowering the number of ferric ions in the rhizosphere. The Pseudomonas monteilii strain MN759447 was isolated from a D. sissoo plantation forest at the Agroforestry Research Centre, Pantnagar, Uttarakhand (28°58'N 79°25'E/28.97°N 79.41°E). It produces a significant number of siderophore units (80.36% in total). A two-stage optimization of growth factors was attempted in the strain MN759447 for better siderophore recovery. In the first-stage single-factor experiment, among the five variables studied, only pH, NH4NO3 concentration, and Fe concentration affected siderophore synthesis. In the second stage, an optimization of pH, NH4NO3 concentration, and Fe concentration for improved growth and enhanced siderophore production was carried out using a Box-Behnken design with response surface methodology. By using LC-MS, two derivatives of pseudomonine, salicylic acid, and kynurenic acid were detected as siderophores in the purified XAD-2 methanol extract of the P. monteilii strain MN759447. In addition to siderophore production, the P. monteilii strain MN759447 also exhibited a broad range of antagonistic activity against Aspergillus calidoustus (65%), Fusarium oxysporum (41.66%), Talaromyces pinophilus (65%), and Talaromyces verruculosus (65.1%) that are linked to sissoo mortality. To our knowledge, this is the first report on siderophore-producing bacteria isolated, identified, and characterized from the D. sissoo Roxb. forest habitat. This strain can also be developed as a commercial product.
  5. Rahaman F, Shukor Juraimi A, Rafii MY, Uddin K, Hassan L, Chowdhury AK, et al.
    Front Plant Sci, 2022;13:1072723.
    PMID: 36589133 DOI: 10.3389/fpls.2022.1072723
    Rice is a key crop for meeting the global food demand and ensuring food security. However, the crop has been facing great problems to combat the weed problem. Synthetic herbicides pose a severe threat to the long-term viability of agricultural output, agroecosystems, and human health. Allelochemicals, secondary metabolites of allelopathic plants, are a powerful tool for biological and eco-friendly weed management. The dynamics of weed species in various situations are determined by crop allelopathy. Phenolics and momilactones are the most common allelochemicals responsible for herbicidal effects in rice. The dispersion of allelochemicals is influenced not only by crop variety but also by climatic conditions. The most volatile chemicals, such as terpenoids, are usually emitted by crop plants in drought-stricken areas whereas the plants in humid zones release phytotoxins that are hydrophilic in nature, including phenolics, flavonoids, and alkaloids. The allelochemicals can disrupt the biochemical and physiological processes in weeds causing them to die finally. This study insight into the concepts of allelopathy and allelochemicals, types of allelochemicals, techniques of investigating allelopathic potential in rice, modes of action of allelochemicals, pathways of allelochemical production in plants, biosynthesis of allelochemicals in rice, factors influencing the production of allelochemicals in plants, genetical manipulation through breeding to develop allelopathic traits in rice, the significance of rice allelopathy in sustainable agriculture, etc. Understanding these biological phenomena may thus aid in the development of new and novel weed-control tactics while allowing farmers to manage weeds in an environmentally friendly manner.
  6. Jaffar NS, Jawan R, Chong KP
    Front Plant Sci, 2022;13:1047945.
    PMID: 36714743 DOI: 10.3389/fpls.2022.1047945
    The microbial diseases cause significant damage in agriculture, resulting in major yield and quality losses. To control microbiological damage and promote plant growth, a number of chemical control agents such as pesticides, herbicides, and insecticides are available. However, the rising prevalence of chemical control agents has led to unintended consequences for agricultural quality, environmental devastation, and human health. Chemical agents are not naturally broken down by microbes and can be found in the soil and environment long after natural decomposition has occurred. As an alternative to chemical agents, biocontrol agents are employed to manage phytopathogens. Interest in lactic acid bacteria (LAB) research as another class of potentially useful bacteria against phytopathogens has increased in recent years. Due to the high level of biosafety, they possess and the processes they employ to stimulate plant growth, LAB is increasingly being recognized as a viable option. This paper will review the available information on the antagonistic and plant-promoting capabilities of LAB and its mechanisms of action as well as its limitation as BCA. This review aimed at underlining the benefits and inputs from LAB as potential alternatives to chemical usage in sustaining crop productivity.
  7. Xu X, Shen Y, Zhang Y, Li Q, Wang W, Chen L, et al.
    Front Plant Sci, 2022;13:1075353.
    PMID: 36684775 DOI: 10.3389/fpls.2022.1075353
    In 2003, Kandelia obovata was identified as a new mangrove species differentiated from Kandelia candel. However, little is known about their chloroplast (cp) genome differences and their possible ecological significance. In this study, 25 whole cp genomes, with seven samples of K. candel from Malaysia, Thailand, and Bangladesh and 18 samples of K. obovata from China, were sequenced for comparison. The cp genomes of both species encoded 128 genes, namely 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes, but the cp genome size of K. obovata was ~2 kb larger than that of K. candle due to the presence of more and longer repeat sequences. Of these, tandem repeats and simple sequence repeats exhibited great differences. Principal component analysis based on indels, and phylogenetic tree analyses constructed with homologous protein genes from the single-copy genes, as well as 38 homologous pair genes among 13 mangrove species, gave strong support to the separation of the two species within the Kandelia genus. Homologous genes ndhD and atpA showed intraspecific consistency and interspecific differences. Molecular dynamics simulations of their corresponding proteins, NAD(P)H dehydrogenase chain 4 (NDH-D) and ATP synthase subunit alpha (ATP-A), predicted them to be significantly different in the functions of photosynthetic electron transport and ATP generation in the two species. These results suggest that the energy requirement was a pivotal factor in their adaptation to differential environments geographically separated by the South China Sea. Our results also provide clues for future research on their physiological and molecular adaptation mechanisms to light and temperature.
  8. Hossain MK, Islam MR, Sundaram RM, Bhuiyan MAR, Wickneswari R
    Front Plant Sci, 2022;13:981345.
    PMID: 36699836 DOI: 10.3389/fpls.2022.981345
    INTRODUCTION: Sheath blight (SB) is the most damaging fungal disease in rice caused by a soil-borne pathogenic fungus, Rhizoctonia solani Kuhn (R. solani). The disease resistance in rice is a complex quantitative trait controlled by a few major genes. UKMRC2 is a newly developed elite rice variety that possesses high yield potential but is susceptible to sheath blight disease indicating a huge risk of varietal promotion, mass cultivation, and large-scale adoption. The aim of our present study was the development of varietal resistance against R. solani in UKMRC2 to enhance its stability and durability in a wide range of environments and to validate the effects of an SB-resistance QTL on the new genetic background.

    METHODS: In our study, we developed 290 BC1F1 backcross progenies from a cross between UKMRC2 and Tetep to introgress the QTL qSBR11-1TT into the UKMRC2 genetic background. Validation of the introgressed QTL region was performed via QTL analysis based on QTL-linked SSR marker genotyping and phenotyping against R. solani artificial field inoculation techniques.

    RESULTS AND DISCUSSION: The QTL qSBR11-1TT was then authenticated with the results of LOD score (3.25) derived from composite interval mapping, percent phenotypic variance explained (14.6%), and additive effect (1.1) of the QTLs. The QTL region was accurately defined by a pair of flanking markers K39512 and RM7443 with a peak marker RM27360. We found that the presence of combination of alleles, RM224, RM27360 and K39512 demonstrate an improved resistance against the disease rather than any of the single allele. Thus, the presence of the QTL qSBR11-1TT has been validated and confirmed in the URMRC2 genetic background which reveals an opportunity to use the QTL linked with these resistance alleles opens an avenue to resume sheath blight resistance breeding in the future with marker-assisted selection program to boost up resistance in rice varieties.

  9. Rashid M, Yousaf Z, Din A, Munawar M, Aftab A, Riaz N, et al.
    Front Plant Sci, 2022;13:889604.
    PMID: 35707614 DOI: 10.3389/fpls.2022.889604
    Leafy vegetable crops are considered as a natural source of mineral nutrients that could decrease the risk factor of many growth issues in children and adults. Spinach is globally considered as the most desirable leafy crop, due to its taste and nutrient richness along with greater nitrate contents and better nitrogen use efficiency. To evaluate the mineral nutrient efficiency of this crop, thirty genetically diverse spinach accessions were analyzed through nutritional and functional marker strategies. The accession 163,310 from Pakistan was found to be rich in minerals (sodium, calcium, potassium, zinc, and manganese) and nitrates. However, the oxalate contents were lesser in the accessions that had greater quantity of nutrients. These represented a negative correlation between mineral availability and oxalate accumulation in the leaves. To study the relationship of oxalates and minerals in the accessions, a functional marker analysis was performed, based on the genes involved in oxalate metabolism and disease resistance in spinach. High level of genetic polymorphism was observed among the accessions represented with 115 polymorphic bands out of 130 bands. Heat map clustering represented the accessions from Asian countries (Pakistan, India, China, and Iran) as the most adaptable accessions to the local environment. The correlation between nutritional and genetic analysis also revealed the nutrient richness of these accessions along with good oxalate metabolism and disease resistance. Hence, these accessions could be considered as useful genotypes in future breeding programs.
  10. Nie Y, Lau SYL, Tan X, Lu X, Liu S, Tahvanainen T, et al.
    Front Plant Sci, 2022;13:974251.
    PMID: 36160957 DOI: 10.3389/fpls.2022.974251
    Melting permafrost mounds in subarctic palsa mires are thawing under climate warming and have become a substantial source of N2O emissions. However, mechanistic insights into the permafrost thaw-induced N2O emissions in these unique habitats remain elusive. We demonstrated that N2O emission potential in palsa bogs was driven by the bacterial residents of two dominant Sphagnum mosses especially of Sphagnum capillifolium (SC) in the subarctic palsa bog, which responded to endogenous and exogenous Sphagnum factors such as secondary metabolites, nitrogen and carbon sources, temperature, and pH. SC's high N2O emission activity was linked with two classes of distinctive hyperactive N2O emitters, including Pseudomonas sp. and Enterobacteriaceae bacteria, whose hyperactive N2O emitting capability was characterized to be dominantly pH-responsive. As the nosZ gene-harboring emitter, Pseudomonas sp. SC-H2 reached a high level of N2O emissions that increased significantly with increasing pH. For emitters lacking the nosZ gene, an Enterobacteriaceae bacterium SC-L1 was more adaptive to natural acidic conditions, and N2O emissions also increased with pH. Our study revealed previously unknown hyperactive N2O emitters in Sphagnum capillifolium found in melting palsa mound environments, and provided novel insights into SC-associated N2O emissions.
  11. Razar RM, Qi P, Devos KM, Missaoui AM
    Front Plant Sci, 2022;13:739133.
    PMID: 35665173 DOI: 10.3389/fpls.2022.739133
    The prevalence of genetic diversity in switchgrass germplasm can be exploited to capture favorable alleles that increase its range of adaptation and biomass yield. The objectives of the study were to analyze the extent of polymorphism and patterns of segregation distortion in two F1 populations and use the linkage maps to locate QTL for biomass yield. We conducted genotyping-by-sequencing on two populations derived from crosses between the allotetraploid lowland genotype AP13 (a selection from "Alamo") and coastal genotype B6 (a selection from PI 422001) with 285 progeny (AB population) and between B6 and the allotetraploid upland VS16 (a selection from "Summer") with 227 progeny (BV population). As predictable from the Euclidean distance between the parents, a higher number of raw variants was discovered in the coastal × upland BV cross (6 M) compared to the lowland × coastal AB cross (2.5 M). The final number of mapped markers was 3,107 on the BV map and 2,410 on the AB map. More segregation distortion of alleles was seen in the AB population, with 75% distorted loci compared to 11% distorted loci in the BV population. The distortion in the AB population was seen across all chromosomes in both the AP13 and B6 maps and likely resulted from zygotic or post-zygotic selection for increased levels of heterozygosity. Our results suggest lower genetic compatibility between the lowland AP13 and the coastal B6 ecotype than between B6 and the upland ecotype VS16. Four biomass QTLs were mapped in the AB population (LG 2N, 6K, 6N, and 8N) and six QTLs in the BV population [LG 1N (2), 8N (2), 9K, and 9N]. The QTL, with the largest and most consistent effect across years, explaining between 8.4 and 11.5% of the variation, was identified on 6N in the AP13 map. The cumulative effect of all the QTLs explained a sizeable portion of the phenotypic variation in both AB and BV populations and the markers associated with them may potentially be used for the marker-assisted improvement of biomass yield. Since switchgrass improvement is based on increasing favorable allele frequencies through recurrent selection, the transmission bias within individuals and loci needs to be considered as this may affect the genetic gain if the favorable alleles are distorted.
  12. Khandaker MM, Jamaludin R, Majrashi A, Rashid ZM, Karim SMR, Al-Yasi HM, et al.
    Front Plant Sci, 2022;13:965765.
    PMID: 36247640 DOI: 10.3389/fpls.2022.965765
    Growth improvement of the medicinal plant, Ficus deltoidea (Mas Cotek) under drought conditions is a vital issue in Malaysia since it is a slow-growing plant and disposed to leaf damage under the stresses of drought. Therefore, investigation was done to examine the outcomes of hydrogen peroxide (H2O2) application on Rubisco gene expression and metabolites accumulation of stressed F. deltoidea plants, and thereby to record the changes in leaf histology, photosynthesis, biochemical properties, and the growth of the plant. H2O2 at the rates of 0, 5, 10, 15, and 20 mM were foliar sprayed biweekly on the drought stressed plants using a hand sprayer. The application of 20 mM H2O2 amplified leaf number, tallness, stomatal conductance, and photosynthetic yield by 143, 24, 88, and 18%, respectively, over the control plant. A reduced transpiration rate and improved chlorophyll fluorescence were also noted in H2O2-treated plants. The treatment produced a greater amount of chlorophyll a, total phenols, total flavonoids, sugar content, and antioxidant activities by 1.61-, 1.30-, 1.98-, 1.92-, and 1.53-fold, respectively. Application of 15 mM H2O2 enhanced net photosynthetic rate and internal CO2 concentrations by 1.05- and 1.25-fold, respectively. Additionally, H2O2 treatments promoted stomatal closure, increased stomata size, the number of stomata, improved vein structure, and reduced the damage of the leaf margin and mesophyll cells of drought stressed plants. The application of H2O2 also accumulated significantly higher contents of sodium (Na+), calcium (Ca2+), potassium (K+), magnesium (Mg+), and iron (Fe2+) in stressed plants. Although the amount of Arsenic (As+) and Antimony (Sb3+) increased to some extent, the increases were not at a toxic level. The use of H2O2 enhanced the Rubisco gene expression to a greater level and the ratio of Rubisco expression increased up to 16-fold. Finally, thirteen (13) identified and five (5) unmatched volatile compounds with a quality score above 70% were identified by gas chromatography-mass spectrometry (GCMS). The GCMS analysis showed that the foliar application of H2O2 accumulates a higher percentage of volatile components in plants which helps to mitigate the negative effects of drought stress. It is concluded that under drought stressed conditions the F. deltoidea plants should be treated with 10-15 mM of H2O2 twice a week to improve leaf histology, photosynthesis, the level of Rubisco gene expression and volatile compounds accumulation, and plant growth and development.
  13. Anwar S, Faisal Nadeem M, Pervaiz I, Khurshid U, Akmal N, Aamir K, et al.
    Front Plant Sci, 2022;13:988352.
    PMID: 36212347 DOI: 10.3389/fpls.2022.988352
    This study was designed to seek the phytochemical analysis, antioxidant, enzyme inhibition, and toxicity potentials of methanol and dichloromethane (DCM) extracts of aerial and root parts of Crotalaria burhia. Total bioactive content, high-performance liquid chromatography-photodiode array detector (HPLC-PDA) polyphenolic quantification, and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analysis were utilized to evaluate the phytochemical composition. Antioxidant [including 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH)], 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power assay (FRAP), cupric reducing antioxidant capacity CUPRAC, phosphomolybdenum, and metal chelation assays] and enzyme inhibition [against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glucosidase, α-amylase, and tyrosinase] assays were carried out for biological evaluation. The cytotoxicity was tested against MCF-7 and MDA-MB-231 breast cell lines. The root-methanol extract contained the highest levels of phenolics (37.69 mg gallic acid equivalent/g extract) and flavonoids (83.0 mg quercetin equivalent/g extract) contents, and was also the most active for DPPH (50.04 mg Trolox equivalent/g extract) and CUPRAC (139.96 mg Trolox equivalent /g extract) antioxidant assays. Likewise, the aerial-methanol extract exhibited maximum activity for ABTS (94.05 mg Trolox equivalent/g extract) and FRAP (64.23 mg Trolox equivalent/g extract) assays. The aerial-DCM extract was noted to be a convincing cholinesterase (AChE; 4.01 and BChE; 4.28 mg galantamine equivalent/g extract), and α-glucosidase inhibitor (1.92 mmol acarbose equivalent/g extract). All of the extracts exhibited weak to modest toxicity against the tested cell lines. A considerable quantities of gallic acid, catechin, 4-OH benzoic acid, syringic acid, vanillic acid, 3-OH-4-MeO benzaldehyde, epicatechin, p-coumaric acid, rutin, naringenin, and carvacrol were quantified via HPLC-PDA analysis. UHPLC-MS analysis of methanolic extracts from roots and aerial parts revealed the tentative identification of important phytoconstituents such as polyphenols, saponins, flavonoids, and glycoside derivatives. To conclude, this plant could be considered a promising source of origin for bioactive compounds with several therapeutic uses.
  14. Remali J, Sahidin I, Aizat WM
    Front Plant Sci, 2022;13:809497.
    PMID: 35463410 DOI: 10.3389/fpls.2022.809497
    Xanthones are secondary metabolites rich in structural diversity and possess a broad array of pharmacological properties, such as antitumor, antidiabetic, and anti-microbes. These aromatic compounds are found in higher plants, such as Clusiaceae, Hypericaceae, and Gentianaceae, yet their biosynthetic pathways have not been comprehensively updated especially within the last decade (up to 2021). In this review, plant xanthone biosynthesis is detailed to illuminate their intricacies and differences between species. The pathway initially involves the shikimate pathway, either through L-phenylalanine-dependent or -independent pathway, that later forms an intermediate benzophenone, 2,3',4,6-tetrahydoxybenzophenone. This is followed by a regioselective intramolecular mediated oxidative coupling to form xanthone ring compounds, 1,3,5-trihydroxyxanthone (1,3,5-THX) or 1,3,7-THX, the core precursors for xanthones in most plants. Recent evidence has shed some lights onto the enzymes and reactions involved in this xanthone pathway. In particular, several biosynthetic enzymes have been characterized at both biochemical and molecular levels from various organisms including Hypericum spp., Centaurium erythraea and Garcinia mangostana. Proposed pathways for a plethora of other downstream xanthone derivatives including swertianolin and gambogic acid (derived from 1,3,5-THX) as well as gentisin, hyperixanthone A, α-mangostin, and mangiferin (derived from 1,3,7-THX) have also been thoroughly covered. This review reports one of the most complete xanthone pathways in plants. In the future, the information collected here will be a valuable resource for a more directed molecular works in xanthone-producing plants as well as in synthetic biology application.
  15. Bayanati M, Al-Tawaha AR, Al-Taey D, Al-Ghzawi AL, Abu-Zaitoon YM, Shawaqfeh S, et al.
    Front Plant Sci, 2022;13:1001992.
    PMID: 36388536 DOI: 10.3389/fpls.2022.1001992
    Biofortification is the supply of micronutrients required for humans and livestock by various methods in the field, which include both farming and breeding methods and are referred to as short-term and long-term solutions, respectively. The presence of essential and non-essential elements in the atmosphere, soil, and water in large quantities can cause serious problems for living organisms. Knowledge about plant interactions with toxic metals such as cadmium (Cd), mercury (Hg), nickel (Ni), and lead (Pb), is not only important for a healthy environment, but also for reducing the risks of metals entering the food chain. Biofortification of zinc (Zn) and selenium (Se) is very significant in reducing the effects of toxic metals, especially on major food chain products such as wheat and rice. The findings show that Zn- biofortification by transgenic technique has reduced the accumulation of Cd in shoots and grains of rice, and also increased Se levels lead to the formation of insoluble complexes with Hg and Cd. We have highlighted the role of Se and Zn in the reaction to toxic metals and the importance of modifying their levels in improving dietary micronutrients. In addition, cultivar selection is an essential step that should be considered not only to maintain but also to improve the efficiency of Zn and Se use, which should be considered more climate, soil type, organic matter content, and inherent soil fertility. Also, in this review, the role of medicinal plants in the accumulation of heavy metals has been mentioned, and these plants can be considered in line with programs to improve biological enrichment, on the other hand, metallothioneins genes can be used in the program biofortification as grantors of resistance to heavy metals.
  16. Kok AD, Mohd Yusoff NF, Sekeli R, Wee CY, Lamasudin DU, Ong-Abdullah J, et al.
    Front Plant Sci, 2021;12:667434.
    PMID: 34149763 DOI: 10.3389/fpls.2021.667434
    Pluronic F-68 (PF-68) is a non-ionic surfactant used in plant tissue culture as a growth additive. Despite its usage as a plant growth enhancer, the mechanism underlying the growth-promoting effects of PF-68 remains largely unknown. Hence, this study was undertaken to elucidate the growth-promoting mechanism of PF-68 using recalcitrant MR 219 callus as a model. Supplementation of 0.04% PF-68 (optimum concentration) was shown to enhance callus proliferation. The treated callus recorded enhanced sugar content, protein content, and glutamate synthase activity as exemplified in the comparative proteome analysis, showing protein abundance involved in carbohydrate metabolism (alpha amylase), protein biosynthesis (ribosomal proteins), and nitrogen metabolism (glutamate synthase), which are crucial to plant growth and development. Moreover, an increase in nutrients uptake was also noted with potassium topping the list, suggesting a vital role of K in governing plant growth. In contrast, 0.10% PF-68 (high concentration) induced stress response in the callus, revealing an increment in phenylalanine ammonia lyase activity, malondialdehyde content, and peroxidase activity, which were consistent with high abundance of phenylalanine ammonia lyase, peroxidase, and peroxiredoxin proteins detected and concomitant with a reduced level of esterase activity. The data highlighted that incorporation of PF-68 at optimum concentration improved callus proliferation of recalcitrant MR 219 through enhanced carbohydrate metabolism, nitrogen metabolism, and nutrient uptake. However, growth-promoting effects of PF-68 are concentration dependent.
  17. Guo W, Banerjee AK, Wu H, Ng WL, Feng H, Qiao S, et al.
    Front Plant Sci, 2021;12:637009.
    PMID: 34249031 DOI: 10.3389/fpls.2021.637009
    Mangroves are ecologically important forest communities in tropical and subtropical coasts, the effective management of which requires understanding of their phylogeographic patterns. However, these patterns often vary among different species, even among ecologically similar taxa or congeneric species. Here, we investigated the levels and patterns of genetic variation within Lumnitzera consisting of two species (L. racemosa and L. littorea) with nearly sympatric ranges across the Indo-West Pacific (IWP) region by sequencing three chloroplast DNA regions (for both species) and genotyping 11 nuclear microsatellite loci (for L. littorea). Consistent with findings in studies on other mangrove species, we found that both L. racemosa and L. littorea showed relatively high genetic variation among populations but low genetic variation within populations. Haplotype network and genetic clustering analyses indicated two well-differentiated clades in both L. racemosa and L. littorea. The relationship between geographic and genetic distances and divergence time estimates of the haplotypes indicated that limited dispersal ability of the propagules, emergence of land barriers during ancient sea-level changes, and contemporary oceanic circulation pattern in the IWP influenced the current population structure of the two species. However, the position of genetic break was found to vary between the two species: in L. racemosa, strong divergence was observed between populations from the Indian Ocean and the Pacific Ocean possibly due to land barrier effect of the Malay Peninsula; in L. littorea, the phylogeographic pattern was created by a more eastward genetic break along the biogeographic barrier identified as the Huxley's line. Overall, our findings strongly supported previous hypothesis of mangrove species divergence and revealed that the two Lumnitzera species have different phylogeographic patterns despite their close genetic relationship and similar current geographic distribution. The findings also provided references for the management of Lumnitzera mangroves, especially for the threatened L. littorea.
  18. Tan B, Li Y, Liu T, Tan X, He Y, You X, et al.
    Front Plant Sci, 2021;12:691651.
    PMID: 34456936 DOI: 10.3389/fpls.2021.691651
    As natural agroecology deteriorates, controlled environment agriculture (CEA) systems become the backup support for coping with future resource consumption and potential food crises. Compared with natural agroecology, most of the environmental parameters of the CEA system rely on manual management. Such a system is dependent and fragile and prone to degradation, which includes harmful bacteria proliferation and productivity decline. Proper water management is significant for constructing a stabilized rhizosphere microenvironment. It has been proved that water is an efficient tool for changing the availability of nutrients, plant physiological processes, and microbial communities within. However, for CEA issues, relevant research is lacking at present. The article reviews the interactive mechanism between water management and rhizosphere microenvironments from the perspectives of physicochemical properties, physiological processes, and microbiology in CEA systems. We presented a synthesis of relevant research on water-root-microbes interplay, which aimed to provide detailed references to the conceptualization, research, diagnosis, and troubleshooting for CEA systems, and attempted to give suggestions for the construction of a high-tech artificial agricultural ecology.
  19. Yeap WC, Norkhairunnisa Che Mohd Khan, Norfadzilah Jamalludin, Muad MR, Appleton DR, Harikrishna Kulaveerasingam
    Front Plant Sci, 2021;12:773656.
    PMID: 34880893 DOI: 10.3389/fpls.2021.773656
    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful tool for the precise editing of plant genomes for crop improvement. Rapid in vitro methods for the determination of guide RNA (gRNA) cleavage efficiency and an efficient DNA delivery system is essential for gene editing. However, we lack an efficient gene-editing system for palm species. In this study, we described the development of a transient oil palm protoplast assay to rapidly evaluate the cleavage efficiency of CRISPR/Cas9 mutagenesis and the generation of stable transformed oil palms using biolistic particle bombardment in immature embryos. Using the phytoene desaturase (EgPDS) gene, we found cleavage frequency of up to 25.49% in electro-transfected protoplast, which enables the production of transgenic oil palm shoots exhibiting chimeric albino phenotypes as a result of DNA insertions, deletions (InDels), and nucleotide substitutions, with a mutation efficiency of 62.5-83.33%. We further validated the mutagenesis efficiency and specificity of the CRISPR/Cas9 system in oil palm by targeting the brassinosteroid-insensitive 1 (EgBRI1) gene, which resulted in nucleotide substitutions in EgBRI1 with premature necrosis phenotype in oil palm transgenic shoots and stunted phenotype resulting from DNA InDels. Taken together, our results showed that effective and efficient editing of genes using the CRISPR/Cas9 system can be achieved in oil palm by optimizing the selection of efficient gRNA and DNA delivery methods. This newly designed strategy will enable new routes for the genetic improvement in oil palm and related species.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links