Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Butt UM, Letchmunan S, Ali M, Hassan FH, Baqir A, Sherazi HHR
    J Healthc Eng, 2021;2021:9930985.
    PMID: 34631003 DOI: 10.1155/2021/9930985
    The remarkable advancements in biotechnology and public healthcare infrastructures have led to a momentous production of critical and sensitive healthcare data. By applying intelligent data analysis techniques, many interesting patterns are identified for the early and onset detection and prevention of several fatal diseases. Diabetes mellitus is an extremely life-threatening disease because it contributes to other lethal diseases, i.e., heart, kidney, and nerve damage. In this paper, a machine learning based approach has been proposed for the classification, early-stage identification, and prediction of diabetes. Furthermore, it also presents an IoT-based hypothetical diabetes monitoring system for a healthy and affected person to monitor his blood glucose (BG) level. For diabetes classification, three different classifiers have been employed, i.e., random forest (RF), multilayer perceptron (MLP), and logistic regression (LR). For predictive analysis, we have employed long short-term memory (LSTM), moving averages (MA), and linear regression (LR). For experimental evaluation, a benchmark PIMA Indian Diabetes dataset is used. During the analysis, it is observed that MLP outperforms other classifiers with 86.08% of accuracy and LSTM improves the significant prediction with 87.26% accuracy of diabetes. Moreover, a comparative analysis of the proposed approach is also performed with existing state-of-the-art techniques, demonstrating the adaptability of the proposed approach in many public healthcare applications.
  2. Mohdiwale S, Sahu M, Sinha GR, Nisar H
    J Healthc Eng, 2021;2021:3928470.
    PMID: 34616530 DOI: 10.1155/2021/3928470
    Interpreting the brain commands is now easier using brain-computer interface (BCI) technologies. Motor imagery (MI) signal detection is one of the BCI applications, where the movements of the hand and feet can be recognized via brain commands that can be further used to handle emergency situations. Design of BCI techniques encountered challenges of BCI illiteracy, poor signal to noise ratio, intersubject variability, complexity, and performance. The automated models designed for emergency should have lesser complexity and higher performance. To deal with the challenges related to the complexity performance tradeoff, the frequency features of brain signal are utilized in this study. Feature matrix is created from the power of brain frequencies, and newly proposed relative power features are used. Analysis of the relative power of alpha sub-band to beta, gamma, and theta sub-band has been done. These proposed relative features are evaluated with the help of different classifiers. For motor imagery classification, the proposed approach resulted in a maximum accuracy of 93.51% compared to other existing approaches. To check the significance of newly added features, feature ranking approaches, namely, mutual information, chi-square, and correlation, are used. The ranking of features shows that the relative power features are significant for MI task classification. The chi-square provides the best tradeoff between accuracy and feature space. We found that the addition of relative power features improves the overall performance. The proposed models could also provide quick response having reduced complexity.
  3. Burhan N, Kasno M', Ghazali R, Said MR, Abdullah SS, Jali MH
    J Healthc Eng, 2017;2017:1631384.
    PMID: 29138687 DOI: 10.1155/2017/1631384
    Biceps brachii muscle illness is one of the common physical disabilities that requires rehabilitation exercises in order to build up the strength of the muscle after surgery. It is also important to monitor the condition of the muscle during the rehabilitation exercise through electromyography (EMG) signals. The purpose of this study was to analyse and investigate the selection of the best mother wavelet (MWT) function and depth of the decomposition level in the wavelet denoising EMG signals through the discrete wavelet transform (DWT) method at each decomposition level. In this experimental work, six healthy subjects comprised of males and females (26 ± 3.0 years and BMI of 22 ± 2.0) were selected as a reference for persons with the illness. The experiment was conducted for three sets of resistance band loads, namely, 5 kg, 9 kg, and 16 kg, as a force during the biceps brachii muscle contraction. Each subject was required to perform three levels of the arm angle positions (30°, 90°, and 150°) for each set of resistance band load. The experimental results showed that the Daubechies5 (db5) was the most appropriate DWT method together with a 6-level decomposition with a soft heursure threshold for the biceps brachii EMG signal analysis.
  4. Nilashi M, Abumalloh RA, Minaei-Bidgoli B, Samad S, Yousoof Ismail M, Alhargan A, et al.
    J Healthc Eng, 2022;2022:2793361.
    PMID: 35154618 DOI: 10.1155/2022/2793361
    Parkinson's disease (PD) is a complex neurodegenerative disease. Accurate diagnosis of this disease in the early stages is crucial for its initial treatment. This paper aims to present a comparative study on the methods developed by machine learning techniques in PD diagnosis. We rely on clustering and prediction learning approaches to perform the comparative study. Specifically, we use different clustering techniques for PD data clustering and support vector regression ensembles to predict Motor-UPDRS and Total-UPDRS. The results are then compared with the other prediction learning approaches, multiple linear regression, neurofuzzy, and support vector regression techniques. The comparative study is performed on a real-world PD dataset. The prediction results of data analysis on a PD real-world dataset revealed that expectation-maximization with the aid of SVR ensembles can provide better prediction accuracy in relation to decision trees, deep belief network, neurofuzzy, and support vector regression combined with other clustering techniques in the prediction of Motor-UPDRS and Total-UPDRS.
  5. Alzu'bi D, Abdullah M, Hmeidi I, AlAzab R, Gharaibeh M, El-Heis M, et al.
    J Healthc Eng, 2022;2022:3861161.
    PMID: 37323471 DOI: 10.1155/2022/3861161
    Kidney tumor (KT) is one of the diseases that have affected our society and is the seventh most common tumor in both men and women worldwide. The early detection of KT has significant benefits in reducing death rates, producing preventive measures that reduce effects, and overcoming the tumor. Compared to the tedious and time-consuming traditional diagnosis, automatic detection algorithms of deep learning (DL) can save diagnosis time, improve test accuracy, reduce costs, and reduce the radiologist's workload. In this paper, we present detection models for diagnosing the presence of KTs in computed tomography (CT) scans. Toward detecting and classifying KT, we proposed 2D-CNN models; three models are concerning KT detection such as a 2D convolutional neural network with six layers (CNN-6), a ResNet50 with 50 layers, and a VGG16 with 16 layers. The last model is for KT classification as a 2D convolutional neural network with four layers (CNN-4). In addition, a novel dataset from the King Abdullah University Hospital (KAUH) has been collected that consists of 8,400 images of 120 adult patients who have performed CT scans for suspected kidney masses. The dataset was divided into 80% for the training set and 20% for the testing set. The accuracy results for the detection models of 2D CNN-6 and ResNet50 reached 97%, 96%, and 60%, respectively. At the same time, the accuracy results for the classification model of the 2D CNN-4 reached 92%. Our novel models achieved promising results; they enhance the diagnosis of patient conditions with high accuracy, reducing radiologist's workload and providing them with a tool that can automatically assess the condition of the kidneys, reducing the risk of misdiagnosis. Furthermore, increasing the quality of healthcare service and early detection can change the disease's track and preserve the patient's life.
  6. Teoh YX, Lai KW, Usman J, Goh SL, Mohafez H, Hasikin K, et al.
    J Healthc Eng, 2022;2022:4138666.
    PMID: 35222885 DOI: 10.1155/2022/4138666
    Knee osteoarthritis (OA) is a deliberating joint disorder characterized by cartilage loss that can be captured by imaging modalities and translated into imaging features. Observing imaging features is a well-known objective assessment for knee OA disorder. However, the variety of imaging features is rarely discussed. This study reviews knee OA imaging features with respect to different imaging modalities for traditional OA diagnosis and updates recent image-based machine learning approaches for knee OA diagnosis and prognosis. Although most studies recognized X-ray as standard imaging option for knee OA diagnosis, the imaging features are limited to bony changes and less sensitive to short-term OA changes. Researchers have recommended the usage of MRI to study the hidden OA-related radiomic features in soft tissues and bony structures. Furthermore, ultrasound imaging features should be explored to make it more feasible for point-of-care diagnosis. Traditional knee OA diagnosis mainly relies on manual interpretation of medical images based on the Kellgren-Lawrence (KL) grading scheme, but this approach is consistently prone to human resource and time constraints and less effective for OA prevention. Recent studies revealed the capability of machine learning approaches in automating knee OA diagnosis and prognosis, through three major tasks: knee joint localization (detection and segmentation), classification of OA severity, and prediction of disease progression. AI-aided diagnostic models improved the quality of knee OA diagnosis significantly in terms of time taken, reproducibility, and accuracy. Prognostic ability was demonstrated by several prediction models in terms of estimating possible OA onset, OA deterioration, progressive pain, progressive structural change, progressive structural change with pain, and time to total knee replacement (TKR) incidence. Despite research gaps, machine learning techniques still manifest huge potential to work on demanding tasks such as early knee OA detection and estimation of future disease events, as well as fundamental tasks such as discovering the new imaging features and establishment of novel OA status measure. Continuous machine learning model enhancement may favour the discovery of new OA treatment in future.
  7. Vineth Ligi S, Kundu SS, Kumar R, Narayanamoorthi R, Lai KW, Dhanalakshmi S
    J Healthc Eng, 2022;2022:5998042.
    PMID: 35251572 DOI: 10.1155/2022/5998042
    Pulmonary medical image analysis using image processing and deep learning approaches has made remarkable achievements in the diagnosis, prognosis, and severity check of lung diseases. The epidemic of COVID-19 brought out by the novel coronavirus has triggered a critical need for artificial intelligence assistance in diagnosing and controlling the disease to reduce its effects on people and global economies. This study aimed at identifying the various COVID-19 medical imaging analysis models proposed by different researchers and featured their merits and demerits. It gives a detailed discussion on the existing COVID-19 detection methodologies (diagnosis, prognosis, and severity/risk detection) and the challenges encountered for the same. It also highlights the various preprocessing and post-processing methods involved to enhance the detection mechanism. This work also tries to bring out the different unexplored research areas that are available for medical image analysis and how the vast research done for COVID-19 can advance the field. Despite deep learning methods presenting high levels of efficiency, some limitations have been briefly described in the study. Hence, this review can help understand the utilization and pros and cons of deep learning in analyzing medical images.
  8. Abdul Yamin NAA, Basaruddin KS, Abu Bakar S, Salleh AF, Mat Som MH, Yazid H, et al.
    J Healthc Eng, 2022;2022:7716821.
    PMID: 36275397 DOI: 10.1155/2022/7716821
    This study aims to investigate the gait stability response during incline and decline walking for various surface inclination angles in terms of the required coefficient of friction (RCOF), postural stability index (PSI), and center of pressure (COP)-center of mass (COM) distance. A customized platform with different surface inclinations (0°, 5°, 7.5°, and 10°) was designed. Twenty-three male volunteers participated by walking on an inclined platform for each inclination. The process was then repeated for declined platform as well. Qualysis motion capture system was used to capture and collect the trajectories motion of ten reflective markers that attached to the subjects before being exported to a visual three-dimensional (3D) software and executed in Matlab to obtain the RCOF, PSI, as well as dynamic PSI (DPSI) and COP-COM distance parameters. According to the result for incline walking, during initial contact, the RCOF was not affected to inclination. However, it was affected during peak ground reaction force (GRF) starting at 7.5° towards 10° for both walking conditions. The most affected PSI was found at anterior-posterior PSI (APSI) even as low as 5° inclination during both incline and decline walking. On the other hand, DPSI was not affected during both walking conditions. Furthermore, COP-COM distance was most affected during decline walking in anterior-posterior direction. The findings of this research indicate that in order to decrease the risk of falling and manage the inclination demand, a suitable walking strategy and improved safety measures should be applied during slope walking, particularly for decline and anterior-posterior orientations. This study also provides additional understanding on the best incline walking technique for secure and practical incline locomotion.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links