Displaying publications 21 - 40 of 98 in total

Abstract:
Sort:
  1. Salimon J, Salih N, Yousif E
    J Oleo Sci, 2011;60(12):613-8.
    PMID: 22123242
    Petroleum is a finite source as well as causing several environmental problems. Therefore petroleum needs to be replaced by alternative and sustainable sources. Plant oils and oleochemicals derived from them represent such alternative sources; the use of oleochemicals as biobased lubricants is of significant interest. This article presents a series of chemical modification on oleic acid to yield synthetic biolubricant basestocks. Measuring of density, volatility, cloud point (CP), pour point (PP), flash point (FP), viscosity index (VI), onset temperature (OT) and signal maximum temperature (SMT) was carried out for each compound. Furthermore, the friction and wear properties were measured using high-frequency reciprocating rig (HFRR). The results showed that octadecyl 9-octadecyloxy-10-hydroxyoctadecanoate exhibited the most favorable low-temperature performance (CP %ndash;26°C, PP %ndash;28°C) and the lowest ball wear scan diameter (42 µm) while propyl 9-propyloxy-10-hydroxyoctadecanoate exhibited the higher oxidation stability (OT 156°C).
  2. Sakeena MH, Elrashid SM, Munavvar AS, Azmin MN
    J Oleo Sci, 2011;60(4):155-8.
    PMID: 21427510
    Aim of the present work is to study the effects of oil and drug concentrations on droplets size of a nanoemulsion. Newly introduced oil, palm oil esters (POEs) by Universiti Putra Malaysia researchers was selected for the oil phase of the nanoemulsion, because the oil was reported to be a good vehicle for pharmaceutical use. Nanoemulsions were prepared with different concentrations of oil and drug and their effects on droplets size were studied by laser scattering spectroscopy (Nanophox). The results of droplets size analysis shows the droplets size increase with increasing concentration of oil and drug concentrations. It can be concluded from this study, that oil and drug concentrations have an effect on the droplets size of POEs nanoemulsion system.
  3. Sakeena MH, Elrashid SM, Muthanna FA, Ghassan ZA, Kanakal MM, Laila L, et al.
    J Oleo Sci, 2010;59(7):395-400.
    PMID: 20513974
    This study sets out to investigate the in vitro permeation of ketoprofen from the formulated nanoemulsions through excised rat skin. In vitro permeation of ketoprofen nanoemulsion through rat skin was evaluated in Franz diffusion cells and compared with marketed product (Fastum gel). Limonene which has been reported to be a good enhancer for ketoprofen was selected. Moreover the effects of limonene which was added to the nanoemulsion formulations at levels of 1%, 2%, 3% and on rat skin permeation of ketoprofen were also evaluated. The selected optimized formulation was further studied for skin irritation. Utilization of limonene as a penetration enhancer increased the permeation of ketoprofen from the formulated nanoemulsion with increasing concentrations of limonene. The results obtained showed that nanoemulsion with 3% limonene produced similar and comparable skin permeation of ketoprofen with marketed formulation and the skin irritation study on rats showed the optimized formulation prepared was safe.
  4. Sakeena MH, Yam MF, Elrashid SM, Munavvar AS, Azmin MN
    J Oleo Sci, 2010;59(12):667-71.
    PMID: 21099145
    Ketoprofen is a potent non-steroidal anti-inflammatory drug has been used in the treatment of various kinds of pains, inflammation and arthritis. However, oral administration of ketoprofen produces serious gastrointestinal adverse effects. One of the promising methods to overcome these adverse effects is to administer the drug through the skin. The aim of the present work is to evaluate the anti-inflammatory and analgesic effects from topically applied ketoprofen entrapped palm oil esters (POEs) based nanoemulsion and to compare with market ketoprofen product, Fastum(®) gel. The novelty of this study is, use of POEs for the oil phase of nanoemulsion. The anti-inflammatory and analgesic studies were performed on rats by carrageenan-induced rat hind paw edema test and carrageenan-induced hyperalgesia pain threshold test to compare the ketoprofen entrapped POEs based nanoemulsion formulation and market formulation. Results indicated that there are no significant different between ketoprofen entrapped POEs nanoemulsion and market formulation in carrageenan-induced rat hind paw edema study and carrageenan-induced hyperalgesia pain threshold study. However, it shows a significant different between POEs nanoemulsion formulation and control group in these studies at p<0.05. From these results it was concluded that the developed nanoemulsion have great potential for topical application of ketoprofen.
  5. Sakeena MH, Muthanna FA, Ghassan ZA, Kanakal MM, Elrashid SM, Munavvar AS, et al.
    J Oleo Sci, 2010;59(4):223-8.
    PMID: 20299769
    The aim of the present study is to formulate and investigate the potential of nanoemulsion formulation for topical delivery of ketoprofen. In this study, Palm Oil Esters (POEs) a newly introduced oil by Universiti Putra Malaysia researchers was chosen for the oil phase of the nanoemulsion, because the oil was reported to be a good vehicle for pharmaceutical use. Oil-in-water nanoemulsion was prepared by spontaneous emulsification method. The droplets size was studied by laser scattering spectroscopy (Nanophox) and Transmission Electron Microscopy (TEM). Franz diffusion cells were used, to determine the drug release and drug transferred through methyl acetate cellulose membrane (artificial membrane). The results of droplets size analysis shows the droplets are in the range of nanoemulsion which is below than 500 nm. The in vitro release profile shows a sufficient percentage of drugs released through the methyl acetate cellulose membrane. This initial study showed that the nanoemulsion formulated using POEs has great potential for topical delivery of ketoprofen.
  6. Saad B, Wai WT, Lim BP
    J Oleo Sci, 2008;57(4):257-61.
    PMID: 18332590
    A comparative study of oxidative decomposition behavior of a wide range of vegetable oils and its correlation to iodine value (IV) using thermogravimetric analysis (TGA) was described. The oxidative decomposition of saturated fatty acids shows weight loss before 385 degrees C while oxidative decomposition of unsaturated fatty acids shows lower rate of weight loss (dWt/dt) compared to saturated fatty acids due to the oxidation process ('up taking ' of oxygen) involving breaking down of double bond to form primary and secondary oxidation products, which leads to some weight gain in the sample before being decomposed. The relative differences in the dWt/dt (%/min) of the both fatty acids give different decomposition steps in TGA thermogram, enabling IV to be determined through the percentage weight loss of saturated fatty acids per 100% of total sample weight (excluding weight loss from moisture and volatile compounds). Therefore, TGA method can be used as an alternative method for IV determination with no sample pre-dilution and solvent consumption. Using the TGA methods, good correlation (r = 0.9889) with standard AOCS method was achieved.
  7. Rozi SKM, Nodeh HR, Kamboh MA, Manan NSA, Mohamad S
    J Oleo Sci, 2017 Jul 01;66(7):771-784.
    PMID: 28626137 DOI: 10.5650/jos.ess17016
    A novel adsorbent, palm fatty acid coated magnetic Fe3O4 nanoparticles (MNP-FA) was successfully synthesized with immobilization of the palm fatty acid onto the surface of MNPs. The successful synthesis of MNP-FA was further confirmed by X-Ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Energy dispersive X-Ray spectroscopy (EDX) analyses and water contact angle (WCA) measurement. This newly synthesized MNP-FA was applied as magnetic solid phase extraction (MSPE) adsorbent for the enrichment of polycyclic aromatic hydrocarbons (PAHs), namely fluoranthene (FLT), pyrene (Pyr), chrysene (Cry) and benzo(a)pyrene (BaP) from environmental samples prior to High Performance Liquid Chromatography- Diode Array Detector (HPLC-DAD) analysis. The MSPE method was optimized by several parameters such as amount of sorbent, desorption solvent, volume of desorption solvent, extraction time, desorption time, pH and sample volume. Under the optimized conditions, MSPE method provided a low detection limit (LOD) for FLT, Pyr, Cry and BaP in the range of 0.01-0.05 ng mL(-1). The PAHs recoveries of the spiked leachate samples ranged from 98.5% to 113.8% with the RSDs (n = 5) ranging from 3.5% to 12.2%, while for the spiked sludge samples, the recoveries ranged from 81.1% to 119.3% with the RSDs (n = 5) ranging from 3.1% to 13.6%. The recyclability study revealed that MNP-FA has excellent reusability up to five times. Chromatrographic analysis demonstrated the suitability of MNP-FA as MSPE adsorbent for the efficient extraction of PAHs from environmental samples.
  8. Rehman K, Mohd Amin MC, Zulfakar MH
    J Oleo Sci, 2014;63(10):961-70.
    PMID: 25252741
    Polymer-Fish oil bigel (hydrogel/oleogel colloidal mixture) was developed by using fish oil and natural (sodium alginate) and synthetic (hydroxypropyl methylcellulose) polymer for pharmaceutical purposes. The bigels were closely monitored and thermal, rheological and mechanical properties were compared with the conventional hydrogels for their potential use as an effective transdermal drug delivery vehicle. Stability of the fish oil fatty acids (especially eicosapentanoic acid, EPA and docosahexanoic acid, DHA) was determined by gas chromatography and the drug content (imiquimod) was assessed with liquid chromatography. Furthermore, in vitro permeation study was conducted to determine the capability of the fish oil-bigels as transdermal drug delivery vehicle. The bigels showed pseudoplastic rheological features, with excellent mechanical properties (adhesiveness, peak stress and hardness), which indicated their excellent spreadability for application on the skin. Bigels prepared with mixture of sodium alginate and fish oil (SB1 and SB2), and the bigels prepared with the mixture of hydroxypropyl methylcellulose and fish oil (HB1-HB3) showed high cumulative permeation and drug flux compared to hydrogels. Addition of fish oil proved to be beneficial in increasing the drug permeation and the results were statistically significant (p < 0.05, one-way Anova, SPSS 20.0). Thus, it can be concluded that bigel formulations could be used as an effective topical and transdermal drug delivery vehicle for pharmaceutical purposes.
  9. Rehman K, Mohd Amin MC, Yuen NP, Zulfakar MH
    J Oleo Sci, 2016 Mar 1;65(3):217-24.
    PMID: 26876681 DOI: 10.5650/jos.ess15256
    Fish oil is composed of various fatty acids among which omega-3 fatty acids are considered as most beneficial. The effects of fish oil on the activity of a topical anticancer drug, imiquimod, and the immunomodulatory activity of omega-3 fatty acids was investigated in human basal and squamous cell carcinoma cell lines. Imiquimod-fish oil mixture exhibited higher carcinoma cell growth inhibition and immunomodulatory activity than imiquimod alone, especially against squamous cell carcinoma cells. Omega-3 fatty acids exhibited growth inhibition of both basal cell and squamous cell carcinoma cell lines and modulated the immune response. Omega-3 fatty acids of fish oil serve as inducers of interleukin-10, an anti-inflammatory cytokine, and as suppressors of interleukin-6 and tumor necrosis factor-alpha, which not only depress tumor growth but also adequately control the inflammatory side effects of imiquimod. Thus, imiquimod administration with fish oil could be beneficial for inhibition of non-melanoma skin carcinoma cells but further in vivo studies are needed to understand their role in skin cancer.
  10. Ramli MR, Lin SW, Yoo CK, Idris NA, Sahri MM
    J Oleo Sci, 2008;57(11):605-12.
    PMID: 18838833
    Solid fat from fractionation of palm-based products was converted into cake shortening at different processing conditions. High oleic palm stearin with an oleic content of 48.2 % was obtained from fractionation of high oleic palm oil which was produced locally. Palm product was blended with different soft oils at pre-determined ratio and further fractionated to obtain the solid fractions. These fractions were then converted into cake shortenings named as high oleic, N1 and N2 blends. The physico-chemical properties of the experimental shortenings were compared with those of control shortenings in terms of fatty acid composition (FAC), iodine value (IV), slip melting point (SMP), solid fat content (SFC) and polymorphic forms. Unlike the imported commercial shortenings as reported by other studies and the control, experimental shortenings were trans-free. The SMP and SFC of experimental samples, except for the N2 sample, fell within the ranges of commercial and control shortenings. The IV was higher than those of domestic shortenings but lower when compared to imported and control shortenings. They were also observed to be beta tending even though a mixture of beta and beta' was observed in the samples after 3 months of storage. The shortenings were also used in the making of pound cake and sensory evaluation showed the good performance of high oleic sample as compared to the other shortenings.
  11. Ramli MR, Tarmizi AHA, Hammid ANA, Razak RAA, Kuntom A, Lin SW, et al.
    J Oleo Sci, 2020 Aug 06;69(8):815-824.
    PMID: 32641608 DOI: 10.5650/jos.ess20021
    Approximately 900 tonne of crude palm oil (CPO) underwent washing using 5 to 10% hot water (90 to 95°C) at a palm oil mill. The aim of the CPO washing was to eliminate and/or reduce total chlorine content present in the conventional CPO, as it is known as the main precursor for the formation of 3-monochloropropane-1, 2-diol esters (3-MCPDE). By a simple hot water washing, more than 85% of the total chlorine was removed. However, washing did not have significant (p > 0.05) effect on other oil quality parameters such as the deterioration of bleachability index (DOBI), free fatty acid (FFA) content and diacylglycerol (DAG) content of the oil. The latter has been established as the main precursor for glycidyl esters (GE) formation. The treated CPO was then transported using tankers and further refined at a commercial refinery. Refining of washed CPO resulted in significantly (p < 0.05) lower formation of 3-MCPDE, but GE content remained slightly high. Post-treatment of refined oil significantly reduced the GE content (p < 0.05) to an acceptable level whilst almost maintaining the low 3-MCPDE level. The study has proven that water washing of CPO prior to refining and subsequent post-refining is so far the most effective way to produce good quality refined oil with considerably low 3-MCPDE and GE contents. Dry fractionation of refined palm oil showed these contaminants partitioned more into the liquid olein fraction compared to the stearin fraction.
  12. Radzi SM, Mohamad R, Basri M, Salleh AB, Ariff A, Rahman MB, et al.
    J Oleo Sci, 2010;59(3):127-34.
    PMID: 20124754
    The kinetics of wax ester synthesis from oleic acid and oleyl alcohol using immobilized lipase from Candida antartica as catalyst was studied with different types of impeller (Rushton turbine and AL-hydrofoil) to create different mixing conditions in 2l stirred tank reactor. The effects of catalyst concentration, reaction temperature, and impeller tip speed on the synthesis were also evaluated. Rushton turbine impeller exhibited highest conversion rate at lower impeller tip speed as compared to AL-hydrofoil impeller. A second-order reversible kinetic model from single progress curve for the prediction of fractional conversion at given reaction time was proposed and the corresponding kinetic parameter values were calculated by non-linear regression method. The results from the simulation using the proposed model showed satisfactory agreement with the experimental data. Activation energy shows a value of 21.77 Kcal/mol. The thermodynamic parameters of the process, enthalpy and entropy, were 21.15 Kcal/mol and 52.07 cal/mol.K, respectively.
  13. Radzali SA, Baharin BS, Othman R, Markom M, Rahman RA
    J Oleo Sci, 2014;63(8):769-77.
    PMID: 25007745
    In recent years, astaxanthin is claimed to have a 10 times higher antioxidant activity than that of other carotenoids such as lutein, zeaxanthin, canthaxanthin, and β-carotene; the antioxidant activity of astaxanthin is 100 times higher than that of α-tocopherol. Penaeus monodon (tiger shrimp) is the largest commercially available shrimp species and its waste is a rich source of carotenoids such as astaxanthin and its esters. The efficient and environment-friendly recovery of astaxanthins was accomplished by using a supercritical fluid extraction (SFE) technique. The effects of different co-solvents and their concentrations on the yield and composition of the extract were investigated. The following co-solvents were studied prior to the optimization of the SFE technique: ethanol, water, methanol, 50% (v/v) ethanol in water, 50% (v/v) methanol in water, 70% (v/v) ethanol in water, and 70% (v/v) methanol in water. The ethanol extract produced the highest carotenoid yield (84.02 ± 0.8 μg/g) dry weight (DW) with 97.1% recovery. The ethanol extract also produced the highest amount of the extracted astaxanthin complex (58.03 ± 0.1 μg/g DW) and the free astaxanthin content (12.25 ± 0.9 μg/g DW) in the extract. Lutein and β-carotene were the other carotenoids identified. Therefore, ethanol was chosen for further optimization studies.
  14. Ping BTY, Idris CAC, Maurad ZA
    J Oleo Sci, 2020 Oct 07;69(10):1209-1218.
    PMID: 32908090 DOI: 10.5650/jos.ess20045
    Refined red palm olein (RPOo) is the first cooking oil that is a pro-Vitamin A source due to its high carotenoid concentration. The quality specifications from the manufacturers are usually applied to freshly produced oil. However, there is currently no information regarding the oxidative stability and phytonutrient content (Vitamin E and Carotene) for RPOo after prolonged storage time. The objective then is to study the effect of two local storage conditions and storage period(s) on the oxidative stability of RPOo. In this study, peroxide value (PV), p-anisidine value (AnV), induction period (IP), free fatty acid (FFA), and Vitamin E content were determined periodically for twelve months under local storage conditions (supermarket and kitchen). Carotene content, however, was determined only at initial and at the 12th month of storage time periods. It was found that there was an overall progressive but slow increase in PV and p-AnV. For PV, the storage effects were inconsistent. However, the effects were significant (p < 0.01) on the AnV throughout storage. At the end of the 12-months, for both storage conditions, the PV < 10 meq O2 g-1, the AnV < 10, the FFA < 0.2 % (palmitic acid), with a 30% drop in the total Vitamin E, and carotenoids content showed no significant drop (p < 0.01). The PV and AnV were also within Codex Alimentarius' recommended limits. Finally, the oxidative parameters showed that RPOo remains stable after year storage under the two simulated local storage conditions (the aforementioned supermarket and kitchen).
  15. Ping BTY, Aziz HA, Idris Z
    J Oleo Sci, 2018;67(3):265-272.
    PMID: 29491321 DOI: 10.5650/jos.ess17164
    High-Performance Liquid Chromatography (HPLC) methods via evaporative light scattering (ELS) and refractive index (RI) detectors are used by the local palm oil industry to monitor the TAG profiles of palm oil and its fractions. The quantitation method used is based on area normalization of the TAG components and expressed as percentage area. Although not frequently used, peak-area ratios based on TAG profiles are a possible qualitative method for characterizing the TAG of palm oil and its fractions. This paper aims to compare these two detectors in terms of peak-area ratio, percentage peak area composition, and TAG elution profiles. The triacylglycerol (TAG) composition for palm oil and its fractions were analysed under similar HPLC conditions i.e. mobile phase and column. However, different sample concentrations were used for the detectors while remaining within the linearity limits of the detectors. These concentrations also gave a good baseline resolved separation for all the TAGs components. The results of the ELSD method's percentage area composition for the TAGs of palm oil and its fractions differed from those of RID. This indicates an unequal response of TAGs for palm oil and its fractions using the ELSD, also affecting the peak area ratios. They were found not to be equivalent to those obtained using the HPLC-RID. The ELSD method showed a better baseline separation for the TAGs components, with a more stable baseline as compared with the corresponding HPLC-RID. In conclusion, the percentage area compositions and peak-area ratios for palm oil and its fractions as derived from HPLC-ELSD and RID were not equivalent due to different responses of TAG components to the ELSD detector. The HPLC-RID has a better accuracy for percentage area composition and peak-area ratio because the TAG components response equally to the detector.
  16. Othman R, Mohd Zaifuddin FA, Hassan NM
    J Oleo Sci, 2014;63(8):753-60.
    PMID: 25017864
    Carotenoids are bioactive compounds with remarkably special properties produced by plants in response to internal and external stresses. In this review paper, we focus on the subject of carotenoid biosynthesis and several factors that have been reported to significantly enhance or reduce carotenoid accumulation in studied plant species. These factors include varietal aspects, location, growing season, and type of stress experienced by a plant. In addition, we propose that there are three stress resistance mechanisms in plants: avoidance, tolerance, and acclimation. Better understanding of the environmental factors affecting carotenoid biosynthesis will help researchers to develop methods for enhancing the production of carotenoids and other pigments to desired concentrations in plant crops.
  17. Osman F, Jaswir I, Khaza'ai H, Hashim R
    J Oleo Sci, 2007;56(3):107-13.
    PMID: 17898471
    Total lipid contents and fatty acid composition of 13 marine fish species namely, "jenahak" (Lutianus agentimaculatus), "kebasi" (Anadontostoma chacunda), "duri" (Arius cumatranus), "tenggiri batang" (Scomberomorus commersoni), "kembong" (Rastrelliger kanagurta), "kintan" or "sebalah" (Psettodes crumei), "kerisi" (Pristipomodes typus), "kerapu" (Epinephelus sexfasciatus), "gelama kling" (Sciaena dussumieri), "malong" (Congresax talabon), "laban" (Cynoglossus lingua), "yu 9" (Scolidon sorrakowah) and "bagi" (Aacnthurs nigrosis) commonly found in Pulau Tuba, one of the islands surrounding the popular tourist destination Langkawi in Malaysia were determined. All fish showed a considerable amount of unsaturated fatty acids particularly those with 4, 5 and 6 double bonds. Two physiologically important n-3 polyunsaturated fatty acids (PUFAs), i.e. eicosapentaenoic acid (EPA) and docasahaexaenoic acid (DHA), made up of more than 50% of the total PUFAs. For saturated fatty acids, palmitic was found to be the major one in all types of fish studied. Based on DHA, EPA and arachidonic acid (AA) contents, "gelama kling" was found to be the best source (23, 11 and 7%, respectively) followed by "kerapu" (21, 10, 9%) and "sebalah" (19, 14, 4%).
  18. Ong TS, Chu CC, Tan CP, Nyam KL
    J Oleo Sci, 2020;69(4):297-306.
    PMID: 32249259 DOI: 10.5650/jos.ess19250
    Plant seed oil is often incorporated into the cream emulsions to provide multifunctional effects on the skin. In the current study, pumpkin seed oil (PSO) was used to develop a stable oil-in-water emulsion. The study aimed to optimise PSO cream formulation and determine the synergistic effect of the PSO with vitamin E oil added. The physical properties, antioxidant activities and storage stability of the formulations were analysed. Besides, the synergistic effect of the best formulation was analysed based on α-tocopherol content using ultra-high performance liquid chromatography (UHPLC). The storage stability test was assessed upon storing at 25 ± 2°C and 40 ± 2°C for 12 weeks. The best formulation (20% PSO, vitamin E oil and beeswax) selected showed physically and microbiologically stable. The incorporation of vitamin E oil into the formulation produced with PSO was found to be compatible, as it showed a synergistic effect in the amount of α-tocopherol content (combination index (CI) = 0.98). Thus, PSO had shown its potency to be incorporated into the topical products with a promising potential in delivering additional properties that can nourish the skin.
  19. Noviendri D, Jaswir I, Taher M, Mohamed F, Salleh HM, Noorbatcha IA, et al.
    J Oleo Sci, 2016 Jul 15.
    PMID: 27430384
    Microencapsulation is a promising approach in drug delivery to protect the drug from degradation and allow controlled release of the drug in the body. Fucoxanthin-loaded microsphere (F-LM) was fabricated by two step w/o/w double emulsion solvent evaporation method with poly (L-lactic-co-glycolic acid) (PLGA) as carrier. The effect of four types of surfactants (PVA, Tween-20, Span-20 and SDS), homogenization speed, and concentration of PLGA polymer and surfactant (PVA), respectively, on particle size and morphology of F-LM were investigated. Among the surfactants tested, PVA showed the best results with smallest particle size (9.18 µm) and a smooth spherical surface. Increasing the homogenization speed resulted in a smaller mean F-LM particle size [d(0.50)] from 17.12 to 9.18 µm. Best particle size results and good morphology were attained at homogenization speed of 20 500 rpm. Meanwhile, increased PLGA concentration from 1.5 to 11.0 (% w/v) resulted in increased F-LM particle size. The mean particle size [d(0.5)] of F-LM increased from 3.93 to 11.88 µm. At 6.0 (% w/v) PLGA, F-LM showed the best structure and external morphology. Finally, increasing PVA concentration from 0.5 to 3.5 (% w/v) resulted in decreased particle size from 9.18 to 4.86 µm. Fucoxanthin characterization before and after microencapsulation was carried out to assess the success of the microencapsulation procedure. Thermo gravimetry analysis (TGA), glass transition (Tg) temperature of F-LM and fucoxanthin measured using DSC, ATR-FTIR and XRD indicated that fucoxanthin was successfully encapsulated into the PLGA matrix, while maintaining the structural and chemical integrity of fucoxanthin.
  20. Nodeh HR, Rashidi L, Gabris MA, Gholami Z, Shahabuddin S, Sridewi N
    J Oleo Sci, 2020 Nov 01;69(11):1359-1366.
    PMID: 33055442 DOI: 10.5650/jos.ess20128
    For the very first time, the nutritional and physicochemical properties of the oil extracted from hackberry Celtis australis fruit were investigated with the aim of possible applications of such wild fruit oil. The physicochemical properties such as peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were examined extensively. The obtained results showed that peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were found to be 4.9 meq O2/kg fat, 0.9 mg KOH/g fat, 193.6 mg KOH/g fat, 141.52 mg I2/g fat and ~5%, respectively. The predominant fatty acid found in this wild fruit is linoleic acid which was calculated to be 73.38%±1.24. In addition, gamma-tocopherol (87%) and β-sitosterol (81.2%±1.08) were the major tocopherol and sterol compositions found in Celtis australis seed oil. Moreover, equivalent carbon number (ECN) analysis has indicated that the three linoleic acids are the main composition of the triacylglycerols extracted from Celtis australis. Also, the high value of omega 6 and β-sitosterol make this oil applicable in cosmetics and pharmaceutical applications.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links