Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Douglas I, Bidin K, Balamurugan G, Chappell NA, Walsh RP, Greer T, et al.
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1749-61.
    PMID: 11605619
    Ten years' hydrological investigations at Danum have provided strong evidence of the effects of extremes of drought, as in the April 1992 El Niño southern oscillation event, and flood, as in January 1996. The 1.5 km2 undisturbed forest control catchment experienced a complete drying out of the stream for the whole 1.5 km of defined channel above the gauging station in 1992, but concentrated surface flow along every declivity from within a few metres of the catchment divide after the exceptional rains of 19 January 1996. Under these natural conditions, erosion is episodic. Sediment is discharged in pulses caused by storm events, collapse of debris dams and occasional landslips. Disturbance by logging accentuates this irregular regime. In the first few months following disturbance, a wave of sediment is moved by each storm, but over subsequent years, rare events scour sediment from bare areas, gullies and channel deposits. The spatial distribution of sediment sources changes with time after logging, as bare areas on slopes are revegetated and small gullies are filled with debris. Extreme storm events, as in January 1996, cause logging roads to collapse, with landslides leading to surges of sediment into channels, reactivating the pulsed sediment delivery by every storm that happened immediately after logging. These effects are not dampened out with increasing catchment scale. Even the 721 km2 Sungai Segama has a sediment yield regime dominated by extreme events, the sediment yield in that single day on 19 January 1996 exceeding the annual sediment load in several previous years. In a large disturbed catchment, such road failures and logging-activity-induced mass movements increase the mud and silt in floodwaters affecting settlements downstream. Management systems require long-term sediment reduction strategies. This implies careful road design and good water movement regulation and erosion control throughout the logging process.
  2. Ewers RM, Didham RK, Fahrig L, Ferraz G, Hector A, Holt RD, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3292-302.
    PMID: 22006969 DOI: 10.1098/rstb.2011.0049
    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.
  3. Reynolds G, Payne J, Sinun W, Mosigil G, Walsh RP
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3168-76.
    PMID: 22006960 DOI: 10.1098/rstb.2011.0154
    In an earlier special issue of this journal, Marsh & Greer summarized forest land use in Sabah at that time and gave an introduction to the Danum Valley Conservation Area. Since that assessment, during the period 1990-2010, the forests of Sabah and particularly those of the ca 10 000 km(2) concession managed on behalf of the State by Yayasan Sabah (the Sabah Foundation) have been subject to continual, industrial harvesting, including the premature re-logging of extensive tracts of previously only once-logged forest and large-scale conversion of natural forests to agricultural plantations. Over the same period, however, significant areas of previously unprotected pristine forest have been formally gazetted as conservation areas, while much of the forest to the north, the south and the east of the Danum Valley Conservation Area (the Ulu Segama and Malua Forest Reserves) has been given added protection and new forest restoration initiatives have been launched. This paper analyses these forest-management and land-use changes in Sabah during the period 1990-2010, with a focus on the Yayasan Sabah Forest Management Area. Important new conservation and forest restoration and rehabilitation initiatives within its borders are given particular emphasis.
  4. Hector A, Fowler D, Nussbaum R, Weilenmann M, Walsh RP
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3165-7.
    PMID: 22006959 DOI: 10.1098/rstb.2011.0174
    With a focus on the Danum Valley area of Sabah, Malaysian Borneo, this special issue has as its theme the future of tropical rainforests in a changing landscape and climate. The global environmental context to the issue is briefly given before the contents and rationale of the issue are summarized. Most of the papers are based on research carried out as part of the Royal Society South East Asia Rainforest Research Programme. The issue is divided into five sections: (i) the historical land-use and land management context; (ii) implications of land-use change for atmospheric chemistry and climate change; (iii) impacts of logging, forest fragmentation (particularly within an oil palm plantation landscape) and forest restoration on ecosystems and their functioning; (iv) the response and resilience of rainforest systems to climatic and land-use change; and (v) the scientific messages and policy implications arising from the research findings presented in the issue.
  5. Willott SJ
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1783-90.
    PMID: 11605621
    The effects of selective logging on the diversity and species composition of moths were investigated by sampling from multiple sites in primary forest, both understorey and canopy, and logged forest at Danum Valley, Sabah, Malaysia. The diversity of individual sites was similar, although rarefied species richness of logged forest was 17% lower than for primary forest (understorey and canopy combined). There was significant heterogeneity in faunal composition and measures of similarity (NESS index) among primary forest understorey sites which may be as great as those between primary understorey and logged forest. The lowest similarity values were between primary forest understorey and canopy, indicating a distinct canopy fauna. A number of species encountered in the logged forest were confined to, or more abundant in, the canopy of primary forest. Approximately 10% of species were confined to primary forest across a range of species' abundances, suggesting this is a minimum estimate for the number of species lost following logging. The importance of accounting for heterogeneity within primary forest and sampling in the canopy when measuring the effects of disturbance on tropical forest communities are emphasized.
  6. Loader NJ, Walsh RP, Robertson I, Bidin K, Ong RC, Reynolds G, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3330-9.
    PMID: 22006972 DOI: 10.1098/rstb.2011.0037
    Stable carbon isotope (δ(13)C) series were developed from analysis of sequential radial wood increments from AD 1850 to AD 2009 for four mature primary rainforest trees from the Danum and Imbak areas of Sabah, Malaysia. The aseasonal equatorial climate meant that conventional dendrochronology was not possible as the tree species investigated do not exhibit clear annual rings or dateable growth bands. Chronology was established using radiocarbon dating to model age-growth relationships and date the carbon isotopic series from which the intrinsic water-use efficiency (IWUE) was calculated. The two Eusideroxylon zwageri trees from Imbak yielded ages of their pith/central wood (±1 sigma) of 670 ± 40 and 759 ± 40 years old; the less dense Shorea johorensis and Shorea superba trees at Danum yielded ages of 240 ± 40 and 330 ± 40 years, respectively. All trees studied exhibit an increase in the IWUE since AD 1960. This reflects, in part, a response of the forest to increasing atmospheric carbon dioxide concentration. Unlike studies of some northern European trees, no clear plateau in this response was observed. A change in the IWUE implies an associated modification of the local carbon and/or hydrological cycles. To resolve these uncertainties, a shift in emphasis away from high-resolution studies towards long, well-replicated time series is proposed to develop the environmental data essential for model evaluation. Identification of old (greater than 700 years) ringless trees demonstrates their potential in assessing the impacts of climatic and atmospheric change. It also shows the scientific and applied value of a conservation policy that ensures the survival of primary forest containing particularly old trees (as in Imbak Canyon and Danum).
  7. Pyle JA, Warwick NJ, Harris NR, Abas MR, Archibald AT, Ashfold MJ, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3210-24.
    PMID: 22006963 DOI: 10.1098/rstb.2011.0060
    We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO(x) emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.
  8. Foster WA, Snaddon JL, Turner EC, Fayle TM, Cockerill TD, Ellwood MD, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3277-91.
    PMID: 22006968 DOI: 10.1098/rstb.2011.0041
    The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links