Displaying publications 21 - 40 of 127 in total

Abstract:
Sort:
  1. Nugroho RWN, Tardy BL, Eldin SM, Ilyas RA, Mahardika M, Masruchin N
    Ultrason Sonochem, 2023 Oct;99:106581.
    PMID: 37690260 DOI: 10.1016/j.ultsonch.2023.106581
    Cellulose nanocrystals (CNCs) are typically extracted from plants and present a range of opto-mechanical properties that warrant their use for the fabrication of sustainable materials. While their commercialization is ongoing, their sustainable extraction at large scale is still being optimized. Ultrasonication is a well-established and routinely used technology for (re-) dispersing and/or isolating plant-based CNCs without the need for additional reagents or chemical processes. Several critical ultrasonication parameters, such as time, amplitude, and energy input, play dominant roles in reducing the particle size and altering the morphology of CNCs. Interestingly, this technology can be coupled with other methods to generate moderate and high yields of CNCs. Besides, the ultrasonics treatment also has a significant impact on the dispersion state and the surface chemistry of CNCs. Accordingly, their ability to self-assemble into liquid crystals and subsequent superstructures can, for example, imbue materials with finely tuned structural colors. This article gives an overview of the primary functions arising from the ultrasonication parameters for stabilizing CNCs, producing CNCs in combination with other promising methods, and highlighting examples where the design of photonic materials using nanocrystal-based celluloses is substantially impacted.
  2. Kohila Rani K, Karuppiah C, Wang SF, Alaswad SO, Sireesha P, Devasenathipathy R, et al.
    Ultrason Sonochem, 2020 Sep;66:105111.
    PMID: 32248043 DOI: 10.1016/j.ultsonch.2020.105111
    Bifunctional electrocatalysts to enable efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential for fabricating high performance metal-air batteries and fuel cells. Here, a defect rich nitrogen and sulfur co-doped graphene/iron carbide (NS-GR/Fe3C) nanocomposite as an electrocatalyst for ORR and OER is demonstrated. An ink of NS-GR/Fe3C is developed by homogeneously dispersing the catalyst in a Nafion containing solvent mixture using an ultrasonication bath (Model-DC150H; power - 150 W; frequency - 40 kHz). The ultrasonically prepared ink is used for preparing the electrode for electrochemical studies. In the case of ORR, the positive half-wave potential displayed by NS-GR/Fe3C is 0.859 V (vs. RHE) and for the OER, onset potential is 1.489 V (vs. RHE) with enhanced current density. The optimized NS-GR/Fe3C electrode exhibited excellent ORR/OER bifunctional activities, high methanol tolerance and excellent long-term cycling stability in an alkaline medium. The observed onset potential for NS-GR/Fe3C electrocatalyst is comparable with the commercial noble metal catalyst, thereby revealing one of the best low-cost alternative air-cathode catalysts for the energy conversion and storage application.
  3. Sergeev A, Motyakin M, Barashkova I, Zaborova V, Krasulya O, Yusof NSM
    Ultrason Sonochem, 2021 Sep;77:105673.
    PMID: 34311321 DOI: 10.1016/j.ultsonch.2021.105673
    The effect of ultrasound treatment on molecular mobility and organization of the main components in raw goat milk was studied by EPR and NMR spectroscopies. NMR relaxation studies showed an increase in the spin-lattice T1 and spin-spin T2 relaxation times in goat milk products (cream, anhydrous fat) and change in the diffusion of proton-containing molecules during ultrasound treatment. The diffusion became more uniform and could be rather accurately approximated by one effective diffusion coefficient Deff, which indicates homogenization of goat milk components, dispersion of globular and supermicellar formations under sonication. EPR studies have shown that molecular mobility and organization of hydrophobic regions in goat milk are similar to those observed in micellar formations of surfactants with a hydrocarbon chain length C12-C16. Ultrasound treatment did not affect submicellar and protein globule organization. Free radicals arising under ultrasound impact of milk reacted quickly with components of goat milk (triglycerides, proteins, fatty acids) and were not observed by spin trapping method.
  4. Tan AT, Tan AW, Yusof F
    Ultrason Sonochem, 2017 01;34:616-625.
    PMID: 27773288 DOI: 10.1016/j.ultsonch.2016.06.039
    Techniques to improve solder joint reliability have been the recent research focus in the electronic packaging industry. In this study, Cu/SAC305/Cu solder joints were fabricated using a low-power high-frequency ultrasonic-assisted reflow soldering approach where non-ultrasonic-treated samples were served as control sample. The effect of ultrasonic vibration (USV) time (within 6s) on the solder joint properties was characterized systematically. Results showed that the solder matrix microstructure was refined at 1.5s of USV, but coarsen when the USV time reached 3s and above. The solder matrix hardness increased when the solder matrix was refined, but decreased when the solder matrix coarsened. The interfacial intermetallic compound (IMC) layer thickness was found to decrease with increasing USV time, except for the USV-treated sample with 1.5s. This is attributed to the insufficient USV time during the reflow stage and consequently accelerated the Cu dissolution at the joint interface during the post-ultrasonic reflow stage. All the USV-treated samples possessed higher shear strength than the control sample due to the USV-induced-degassing effect. The shear strength of the USV-treated sample with 6s was the lowest among the USV-treated samples due to the formation of plate-like Ag3Sn that may act as the crack initiation site.
  5. Low SK, Tan MC, Chin NL
    Ultrason Sonochem, 2018 Nov;48:64-70.
    PMID: 30080587 DOI: 10.1016/j.ultsonch.2018.05.024
    Ultrasound was applied simultaneously with adsorption process in most of the previous studies. However, this method is not practical to treat huge amounts of coloured wastewater effluent. In this study, the efficiency of ultrasound pre-treated peanut husk powder at different power levels (1.5-3.5 W) in dye adsorption with several conditions of initial dye concentration (20-100 mg/L), contact time (0.5-5 h), solution pH (2-8), and dosage (0.1-0.3 g) was studied and compared with ultrasound simultaneous adsorption process and the control. Adsorption efficiency of indirect ultrasound pre-treated peanut husk powder has increased 25.78%, 13.64% and 1.5% compared with the control, ultrasound simultaneous adsorption and direct ultrasound pre-treated sample respectively at 60 mg/L of initial dye concentration. Indirect ultrasound pre-treated sample at 3.5 W has achieved the highest adsorption efficiency of 89.96% at solution pH 8 and 94.83% at 0.3 g dose for 3 h. The surface feature and textural properties of samples were characterized by using scanning electron microscopy and surface characterization analyser. The result indicated that more porous structure was created on the ultrasound pre-treated sample at increasing power levels.
  6. Hamidi H, Mohammadian E, Asadullah M, Azdarpour A, Rafati R
    Ultrason Sonochem, 2015 Sep;26:428-36.
    PMID: 25616638 DOI: 10.1016/j.ultsonch.2015.01.009
    Ultrasound technique is one of the unconventional enhanced oil recovery methods which has been of interest for more than six decades. However, the majority of the oil recovery mechanisms under ultrasound reported in the previous studies are theoretical. Emulsification is one of the mechanisms happening at the interface of oil and water in porous media under ultrasound. Oppositely, ultrasound is one of the techniques using in oil industry for demulsification of oil/water emulsion. Therefore, the conditions in which emulsification becomes dominant over demulsification under ultrasound should be more investigated. Duration of ultrasound radiation could be one of the factors affecting emulsification and demulsification processes. In this study a technique was developed to investigate the effect of long and short period of ultrasound radiation on emulsification and demulsification of paraffin oil and surfactant solution in porous media. For this purpose, the 2D glass Hele-shaw models were placed inside the ultrasonic bath under long and short period of radiation of ultrasound. A microscope was used above the model for microscopic studies on the interface of oil and water. Diffusion of phases and formation of emulsion were observed in both long and short period of application of ultrasound at the beginning of ultrasound radiation. However, by passing time, demulsification and coalescence of brine droplets inside emulsion was initiated in long period of ultrasound application. Therefore, it was concluded that emulsification could be one of the significant oil recovery mechanisms happening in porous media under short period of application of ultrasound.
  7. Mahbubul IM, Saidur R, Amalina MA, Elcioglu EB, Okutucu-Ozyurt T
    Ultrason Sonochem, 2015 Sep;26:361-9.
    PMID: 25616639 DOI: 10.1016/j.ultsonch.2015.01.005
    Improving dispersion stability of nanofluids through ultrasonication has been shown to be effective. Determining specific conditions of ultrasonication for a certain nanofluid is necessary. For this purpose, nanofluids of varying nanoparticle concentrations were prepared and studied to find out a suitable and rather mono-dispersed concentration (i.e., 0.5 vol.%, determined through transmission electron microscopy (TEM) analyses). This study aims to report applicable ultrasonication conditions for the dispersion of Al2O3 nanoparticles within H2O through the two-step production method. The prepared samples were ultrasonicated via an ultrasonic horn for 1-5h at two different amplitudes (25% and 50%). The microstructure, particle size distribution (PSD), and zeta potentials were analyzed to investigate the dispersion characteristics. Better particle dispersion, smaller aggregate sizes, and higher zeta potentials were observed at 3 and 5h of ultrasonication duration for the 50% and 25% of sonicator power amplitudes, respectively.
  8. Syed Jaapar SZ, Morad NA, Iwai Y, Nordin MFM
    Ultrason Sonochem, 2017 Sep;38:62-74.
    PMID: 28633858 DOI: 10.1016/j.ultsonch.2017.02.034
    The use of water in subcritical conditions for extraction has several drawbacks. These include the safety features, higher production costs and possible degradation of the bioactive compounds. To overcome these problems, sonic energy and an entrainer were used as external interventions to decrease the polarity of water at milder operating conditions. The effect of low (28kHz) and high (800kHz) frequencies of sonication in the extraction of the main ginger bioactive compound (6-gingerol) were compared. Six parameters were studied: mean particle size (MPS, mm), time of extraction, applied power, sample to solvent ratio (w/v), temperature of extraction, and the percentage of entrainer. The optimum conditions for high frequency SAWE prototype were MPS 0.89-1.77mm, 45min, 40W applied power, 1:30 (w/v), 45°C, and 15% of ethanol as entrainer. Two-way analysis of variance (ANOVA) gave the most significant parameter, which was power with F (1, 45.07), p<2.50×10-9. Although the effect of low frequency was stronger than high frequency, at the optimum conditions of the sample to solvent ratio 1:30 (w/v) with 700mL solvent and temperature 45°C, the concentration and recovery of 6-gingerol from high frequency of SAWE prototype was 2.69 times higher than at low frequency of SAWE. It was found that although the effects of high frequency (800kHz) were negligible in other studies, it could extract suitable compounds, such as 6-gingerol, at lower temperature. Therefore, the effects of sonication, which cause an enlargement in the cell wall of the ginger plant matrix, were observed using a Scanning Electron Microscope (SEM). It was found that the applied power of sonication was the most significant parameter compared to the other parameters.
  9. Yap YH, Lim MSW, Lee ZY, Lai KC, Jamaal MA, Wong FH, et al.
    Ultrason Sonochem, 2018 Jan;40(Pt A):57-67.
    PMID: 28946460 DOI: 10.1016/j.ultsonch.2017.06.032
    The utilisation of ultrasound in chemical preparation has been the focus of intense study in various fields, including materials science and engineering. This paper presents a novel method of synthesising the copper-manganese oxide (Hopcalite) catalyst that is used for the removal of volatile organic compounds and greenhouse gases like carbon monoxide. Several samples prepared under different conditions, with and without ultrasound, were subjected to a series of characterisation tests such as XRD, BET, FE-SEM, EDX, TPR-H2, TGA and FT-IR in order to establish their chemical and physical properties. A series of catalytic tests using a micro-reactor were subsequently performed on the samples in order to substantiate the aforementioned properties by analysing their ability to oxidise compressed natural gas (CNG), containing methane and sulphur dioxide. Results showed that ultrasonic irradiation of the catalyst led to observable alterations in its morphology: surfaces of the particles were noticeably smoothed and an increased in amorphicity was detected. Furthermore, ultrasonic irradiation has shown to enhance the catalytic activity of Hopcalite, achieving a higher conversion of methane relative to non-sonicated samples. Varying the ultrasonic intensity also produced appreciable effects, whereby an increase in intensity results in a higher conversion rate. The catalyst sonicated at the highest intensity of 29.7W/cm2has a methane conversion rate of 13.5% at 400°C, which was the highest among all the samples tested.
  10. Santhirasegaram V, Razali Z, Somasundram C
    Ultrason Sonochem, 2013 Sep;20(5):1276-82.
    PMID: 23538119 DOI: 10.1016/j.ultsonch.2013.02.005
    Ultrasonic treatment is an emerging food processing technology that has growing interest among health-conscious consumers. Freshly squeezed Chokanan mango juice was thermally treated (at 90 °C for 30 and 60s) and sonicated (for 15, 30 and 60 min at 25 °C, 40 kHz frequency, 130 W) to compare the effect on microbial inactivation, physicochemical properties, antioxidant activities and other quality parameters. After sonication and thermal treatment, no significant changes occurred in pH, total soluble solids and titratable acidity. Sonication for 15 and 30 min showed significant improvement in selected quality parameters except color and ascorbic acid content, when compared to freshly squeezed juice (control). A significant increase in extractability of carotenoids (4-9%) and polyphenols (30-35%) was observed for juice subjected to ultrasonic treatment for 15 and 30 min, when compared to the control. In addition, enhancement of radical scavenging activity and reducing power was observed in all sonicated juice samples regardless of treatment time. Thermal and ultrasonic treatment exhibited significant reduction in microbial count of the juice. The results obtained support the use of sonication to improve the quality of Chokanan mango juice along with safety standard as an alternative to thermal treatment.
  11. Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT
    Ultrason Sonochem, 2012 Jul;19(4):890-900.
    PMID: 22305107 DOI: 10.1016/j.ultsonch.2012.01.003
    This study aimed to evaluate the effects of ultrasound on Lactobacillus fermentum BT 8633 in parent and subsequent passages based on their growth and isoflavone bioconversion activities in biotin-supplemented soymilk. The treated cells were also assessed for impact of ultrasound on probiotic properties. The growth of ultrasonicated parent cells increased (P<0.05) by 3.23-9.14% compared to that of the control during fermentation in biotin-soymilk. This was also associated with enhanced intracellular and extracellular (8.4-17.0% and 16.7-49.2%, respectively; P<0.05) β-glucosidase specific activity, leading to increased bioconversion of isoflavones glucosides to aglycones during fermentation in biotin-soymilk compared to that of the control (P<0.05). Such traits may be credited to the reversible permeabilized membrane of ultrasonicated parent cells that have facilitated the transport of molecules across the membrane. The growing characteristics of first, second and third passage of treated cells in biotin-soymilk were similar (P>0.05) to that of the control, where their growth, enzyme and isoflavone bioconversion activities (P>0.05) were comparable. This may be attributed to the temporary permeabilization in the membrane of treated cells. Ultrasound affected probiotic properties of parent L. fermentum, by reducing tolerance ability towards acid (pH 2) and bile; lowering inhibitory activities against selected pathogens and reducing adhesion ability compared to that of the control (P<0.05). The first, second and third passage of treated cells did not exhibit such traits, with the exception of their bile tolerance ability which was inherited to the first passage (P<0.05). Our results suggested that ultrasound could be used to increase bioactivity of biotin-soymilk via fermentation by probiotic L. fermentum FTDC 8633 for the development of functional food.
  12. Sabaruddin FA, Megashah LN, Shazleen SS, Ariffin H
    Ultrason Sonochem, 2023 Oct;99:106572.
    PMID: 37696213 DOI: 10.1016/j.ultsonch.2023.106572
    The utilization of agricultural residues to obtain biocompounds of high-added value has significantly increased in the past decades. The conversion of agro-based residues into valuable products appears to be an economically efficient, environment-friendly, and protracted waste management practice. The implementation of ultrasonic technologies in the conversion of value-added goods from agricultural waste materials through pre-treatment and valorization processes has imparted many advantageous effects including rapid processing, effective process performance, minimization of processing steps, minimal dependency on harmful chemicals, and an increased yield and properties of bio-products. To further enliven the literature and inspire new research investigations, this review covers the comprehensive work including theoretical principles, processes, and potential benefits of ultrasonic treatment technologies to assist the production of bio-products which emphasize the extraction yield and the characteristic of the end-product extracted from agriculture residues. A detailed evaluation of these methods and key aspects impacting their performance as well as the features and shortcomings of each ultrasound-assisted approach is also discussed. This review also addressed some of the challenges associated with using ultrasonic irradiation and proposed several potential techniques to maximize productivity. Understanding the concept of ultrasonication technique allow the academician and industrial practitioners to explore the possibility of applying a greener and sustainable approach of biomass extraction to be translated into higher scale production of commercial products.
  13. Ewe JA, Wan Abdullah WN, Bhat R, Karim AA, Liong MT
    Ultrason Sonochem, 2012 Jan;19(1):160-73.
    PMID: 21775184 DOI: 10.1016/j.ultsonch.2011.06.013
    This study aimed at utilizing ultrasound treatment to further enhance the growth of lactobacilli and their isoflavone bioconversion activities in biotin-supplemented soymilk. Strains of lactobacilli (Lactobacillus acidophilus BT 1088, L. fermentum BT 8219, L. acidophilus FTDC 8633, L. gasseri FTDC 8131) were treated with ultrasound (30 kHz, 100 W) at different amplitudes (20%, 60% and 100%) for 60, 120 and 180 s prior to inoculation and fermentation in biotin-soymilk. The treatment affected the fatty acids chain of the cellular membrane lipid bilayer, as shown by an increased lipid peroxidation (P<0.05). This led to increased membrane fluidity and subsequently, membrane permeability (P<0.05). The permeabilized cellular membranes had facilitated nutrient internalization and subsequent growth enhancement (P<0.05). Higher amplitudes and longer durations of the treatment promoted growth of lactobacilli in soymilk, with viable counts exceeding 9 log CFU/mL. The intracellular and extracellular β-glucosidase specific activities of lactobacilli were also enhanced (P<0.05) upon ultrasound treatment, leading to increased bioconversion of isoflavones in soymilk, particularly genistin and malonyl genistin to genistein. Results from this study show that ultrasound treatment on lactobacilli cells promotes (P<0.05) the β-glucosidase activity of cells for the benefit of enhanced (P<0.05) isoflavone glucosides bioconversion to bioactive aglycones in soymilk.
  14. Krishnaiah P, Ratnam CT, Manickam S
    Ultrason Sonochem, 2017 01;34:729-742.
    PMID: 27773300 DOI: 10.1016/j.ultsonch.2016.07.008
    In this investigation, sisal fibres were treated with the combination of alkali and high intensity ultrasound (HIU) and their effects on the morphology, thermal properties of fibres and mechanical properties of their reinforced PP composites were studied. FTIR and FE-SEM results confirmed the removal of amorphous materials such as hemicellulose, lignin and other waxy materials after the combined treatments of alkali and ultrasound. X-ray diffraction analysis revealed an increase in the crystallinity of sisal fibres with an increase in the concentration of alkali. Thermogravimetric results revealed that the thermal stability of sisal fibres obtained with the combination of both alkali and ultrasound treatment was increased by 38.5°C as compared to the untreated fibres. Morphology of sisal fibre reinforced composites showed good interfacial interaction between fibres and matrix after the combined treatment. Tensile properties were increased for the combined treated sisal fibres reinforced PP composites as compared to the untreated and pure PP. Tensile modulus and strength increased by more than 50% and 10% respectively as compared to the untreated sisal fibre reinforced composite. It has been found that the combined treatment of alkali and ultrasound is effective and useful to remove the amorphous materials and hence to improve the mechanical and thermal properties.
  15. Bayrami A, Ghorbani E, Rahim Pouran S, Habibi-Yangjeh A, Khataee A, Bayrami M
    Ultrason Sonochem, 2019 Nov;58:104613.
    PMID: 31450359 DOI: 10.1016/j.ultsonch.2019.104613
    The leaf extract of a medicinally important plant, watercress (Nasturtium officinale), was obtained through an ultrasound-facilitated method and utilized for the preparation of ZnO nanoparticles via a joint ultrasound-microwave assisted procedure. The characteristics of the extract enriched nanoparticles (Ext/ZnO) were determined by SEM, TEM, XRD, EDX, BET, FTIR, TGA, and UV-Vis DRS analyses and compared to that of ZnO prepared in the absence of the extract (ZnO). The presence of carbon and carbonaceous bonds, changes in the morphology, size, band gap energy, and weight-decay percentage were a number of differences between ZnO and Ext/ZnO that confirmed the link of extract over nanoparticles. Ext/ZnO, watercress leaf extract, ZnO, and insulin therapies were administrated to treat alloxan-diabetic Wister rats and their healing effectiveness results were compared to one another. The serum levels of the main diabetic indices such as insulin, fasting blood glucose, and lipid profile (total triglyceride, total cholesterol, and high-density lipoprotein cholesterol) were estimated for healthy, diabetic, and the rats rehabilitated with the studied therapeutic agents. The watercress extract-enriched ZnO nanoparticles offered the best performance and suppressed the diabetic status of rats. Moreover, both ZnO samples satisfactory inhibited the activities of Staphylococcus aureus and Escherichia coli bacteria. Based on the results, the application of Nasturtium officinale leaf extract can strongly empower ZnO nanoparticles towards superior antidiabetic and enhanced antibacterial activities.
  16. Sankaran R, Manickam S, Yap YJ, Ling TC, Chang JS, Show PL
    Ultrason Sonochem, 2018 Nov;48:231-239.
    PMID: 30080546 DOI: 10.1016/j.ultsonch.2018.06.002
    In this study, a simple sugaring-out supported by liquid biphasic flotation technique combined with ultrasonication was introduced for the extraction of proteins from microalgae. Sugaring-out as a phase separation method is novel and has been used in the extraction of metal ions, biomolecules and drugs. But, its functioning in protein separation from microalgae is still unknown. In this work, the feasibility of sugaring-out coupled with ultrasound for the extraction of protein was investigated. Primary studies were carried out to examine the effect of sonication on the microalgae cell as well as the separation efficiency of the integrated method. Effect of various operating parameters such as the concentration of microalgae biomass, the location of sonication probe, sonication time, ultrasonic pulse mode (includes varying ON and OFF duration of sonication), concentration of glucose, types of sugar, concentration of acetonitrile and the flow rate in the flotation system for achieving a higher separation efficiency and yield of protein were assessed. Besides, a large-scale study of the integration method was conducted to verify the consistency of the followed technique. A maximum efficiency (86.38%) and yield (93.33%) were attained at the following optimized conditions: 0.6% biomass concentration, 200 g/L of glucose concentration, 100% acetonitrile concentration with 5 min of 5 s ON/10 s OFF pulse mode and at a flow rate of 100 cc/min. The results obtained for large scale were 85.25% and 92.24% for efficiency and yield respectively. The proposed liquid biphasic flotation assisted with ultrasound for protein separation employing sugaring-out demonstrates a high production and separation efficiency and is a cost-effective solution. More importantly, this method provides the possibility of extending its application for the extraction of other important biomolecules.
  17. Mehrali M, Seyed Shirazi SF, Baradaran S, Mehrali M, Metselaar HS, Kadri NA, et al.
    Ultrason Sonochem, 2014 Mar;21(2):735-42.
    PMID: 24120175 DOI: 10.1016/j.ultsonch.2013.08.012
    Calcium silicate hydrate (CSH) consisting of nanosheets has been successfully synthesized assisted by a tip ultrasonic irradiation (UI) method using calcium nitrate (Ca(NO3)·4H2O), sodium silicate (Na2SiO3·9H2O) and sodium dodecyl sulfate (SDS) in water. Systematic studies found that reaction time of ultrasonic irradiation and concentrations of surfactant (SDS) in the system were important factors to control the crystallite size and morphologies. The products were characterized by X-ray power diffraction (XRD), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectrometry (FTIR). The size-strain plot (SSP) method was used to study the individual contributions of crystallite sizes and lattice strain on the peak broadening of the CSH. These characterization techniques revealed the successful formation of a crystalline phase with an average crystallite size of about 13 nm and nanosheet morphology at a reaction time of 10 min UI with 0.2 g SDS in solvent which were found to be optimum time and concentrations of SDS for the synthesis of CSH powders.
  18. Yan Sim X, He N, Mohamed Abdul P, Keong Yeap S, Woh Hui Y, Foong Tiang M, et al.
    Ultrason Sonochem, 2024 Mar;104:106811.
    PMID: 38394823 DOI: 10.1016/j.ultsonch.2024.106811
    Durian peel, an abundant waste in Malaysia could be a potential substrate for fermentable sugar recovery for value-added biochemical production. Common pretreatment such as acid or alkaline pretreatment resulted in the need for extensive solid washing which generated wastewater. Herein, this study aims to introduce sonication on top of chemical pretreatment to destruct lignin and reduce the chemical usage during the durian peel pretreatment process. In this study, the morphology and the chemical composition of the pretreated durian peels were studied. The sugar yield produced from the chemical pretreatment and the combined ultrasound and chemical pretreatment were compared. The morphology and chemical structure of durian peels were investigated by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) analysis and X-ray diffraction (XRD). The SEM images showed that the structural change became more significant when sonication was introduced. Second, XRD profile indicated a relatively higher crystallinity index and FTIR spectra displayed a lower intensity of lignin and hemicellulose for ultrasound plus alkaline (UB) pretreatment as compared to acid, alkaline and ultrasound plus acid (UA) pretreatment. UB and UA pretreatment portrayed higher yield (376.60 ± 12.14 and 237.38 ± 3.96 mg reducing sugar/g dry biomass, respectively) than their controls without the application of ultrasound. Therefore, it could be concluded that ultrasound was able to intensify the fermentable sugar recovery from durian peel by inducing physical and chemical effect of cavitation to alter the morphology of durian peel. Fermentation of UB treated durian peel resulted in 2.68 mol hydrogen/mol consumed sugar and 131.56 mL/Lmedium/h of hydrogen productivity. This study is important because it will shed light on a way to handle durian waste disposal problems and generate fermentable sugars for the production of high value-added products.
  19. Tang SY, Manickam S, Wei TK, Nashiru B
    Ultrason Sonochem, 2012 Mar;19(2):330-45.
    PMID: 21835676 DOI: 10.1016/j.ultsonch.2011.07.001
    In the present study, response surface methodology (RSM) based on central composite design (CCD) was employed to investigate the influence of main emulsion composition variables, namely drug loading, oil content, emulsifier content as well as the effect of the ultrasonic operating parameters such as pre-mixing time, ultrasonic amplitude, and irradiation time on the properties of aspirin-loaded nanoemulsions. The two main emulsion properties studied as response variables were: mean droplet size and polydispersity index. The ultimate goal of the present work was to determine the optimum level of the six independent variables in which an optimal aspirin nanoemulsion with desirable properties could be produced. The response surface analysis results clearly showed that the variability of two responses could be depicted as a linear function of the content of main emulsion compositions and ultrasonic processing variables. In the present investigation, it is evidently shown that ultrasound cavitation is a powerful yet promising approach in the controlled production of aspirin nanoemulsions with smaller average droplet size in a range of 200-300 nm and with a polydispersity index (PDI) of about 0.30. This study proved that the use of low frequency ultrasound is of considerable importance in the controlled production of pharmaceutical nanoemulsions in the drug delivery system.
  20. Tay WH, Lau KK, Shariff AM
    Ultrason Sonochem, 2016 11;33:190-196.
    PMID: 27245970 DOI: 10.1016/j.ultsonch.2016.04.004
    Physical absorption process is always nullified by the presence of cavitation under low frequency ultrasonic irradiation. In the present study, high frequency ultrasonic of 1.7MHz was used for the physical absorption of CO2 in a water batch system under elevated pressure. The parameters including ultrasonic power and initial feed pressure for the system have been varied from 0 to 18W and 6 to 41bar, respectively. The mass transfer coefficient has been determined via the dynamic pressure-step method. Besides, the actual ultrasonic power that transmitted to the liquid was measured based on calorimetric method prior to the absorption study. Subsequently, desorption study was conducted as a comparison with the absorption process. The mechanism for the ultrasonic assisted absorption has also been discussed. Based on the results, the mass transfer coefficient has increased with the increasing of ultrasonic power. It means that, the presence of streaming effect and the formation of liquid fountain is more favorable under high frequency ultrasonic irradiation for the absorption process. Therefore, high frequency ultrasonic irradiation is suggested to be one of the potential alternatives for the gas separation process with its promising absorption enhancement and compact design.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links