Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Puebla-Osorio N, Sarchio SNE, Ullrich SE, Byrne SN
    Methods Mol Biol, 2017;1627:213-222.
    PMID: 28836204 DOI: 10.1007/978-1-4939-7113-8_14
    Mast cells are part of the immune system and characteristically contain histamine- and heparin-rich basophilic granules. While these cells are usually associated with allergy and anaphylaxis, they also promote wound healing and angiogenesis and confer protection against pathogens. The presence of these cells is sometimes indicative of a poor prognosis, especially in skin cancer, pancreatic cancer, and lymphoma. Toluidine blue staining of acid-fast granules is an established method for the identification and quantification of mast cells. Generating detailed information on the location of mast cells within tissues is problematic using this technique and often requires serial sections from adjacent tissue to be separately stained with hematoxylin and eosin (H&E). Staining serial sections is not always possible, particularly if the sample is very small or rare. In such cases, a method of simultaneously identifying and localizing mast cells in a tissue would be advantageous. Toluidine blue and H&E are not commonly combined because H&E includes repetitive washes in water, which may affect the efficacy of the aqueous-soluble toluidine blue. We have developed and tested a novel staining technique that integrates toluidine blue between hematoxylin and eosin in one simple procedure. This protocol works on both frozen and formalin-fixed, paraffin-embedded tissue and readily allows for the identification of purple-stained mast cells against a clean H&E background. This facilitates a more accurate localization and proper counting of mast cells in normal and affected tissue.
    Matched MeSH terms: Mast Cells/metabolism*; Mast Cells/pathology*
  2. Subramani T, Rathnavelu V, Yeap SK, Alitheen NB
    Mediators Inflamm, 2013;2013:275172.
    PMID: 23431239 DOI: 10.1155/2013/275172
    Mast cells (MCs) are multifunctional effector cells that were originally thought to be involved in allergic disorders. Now it is known that they contain an array of mediators with a multitude of effects on many other cells. MCs have become a recent concern in drug-induced gingival overgrowth (DIGO), an unwanted outcome of systemic medication. Most of the studies have confirmed the significant presence of inflammation as a prerequisite for the overgrowth to occur. The inflammatory changes within the gingival tissue appear to influence the interaction between the inducing drug and the fibroblast activity. The development of antibodies to MC-specific enzymes, tryptase and chymase, has facilitated the study of mast cells in DIGO. Many immunohistochemical studies involving MCs have been conducted; as a result, DIGO tissues are found to have increased the number of MCs in the gingiva, especially in the area of fibrosis. At the cellular level, gingival fibrogenesis is initiated by several mediators which induce the recruitment of a large number of inflammatory cells, including MCs. The purpose of this paper is to access the roles played by MCs in gingival overgrowth to hypothesize a relationship between these highly specialized cells in the pathogenesis of DIGO.
    Matched MeSH terms: Mast Cells/metabolism; Mast Cells/physiology*
  3. Chieng CCY, Daud HM, Yusoff FM, Thompson KD, Abdullah M
    J Fish Dis, 2020 Oct;43(10):1249-1258.
    PMID: 32830331 DOI: 10.1111/jfd.13222
    Groupers are popular aquaculture species in South-East Asia, but their cultivation is affected by infectious disease outbreaks. Mucosa-associated lymphoid tissues provide a first-line defence against pathogens; however, few studies are available relating to cellular or proteomic responses of mucosal immunity in grouper. Skin, gill and intestine were sampled from brown-marbled grouper Epinephelus fuscoguttatus (Forsskål, 1775) at 4 and 96 hr post-infection (hpi) and 7 days post-infection (dpi) following intraperitoneal infection with Vibrio harveyi, and stained with haematoxylin/eosin and Alcian Blue/periodic acid-Schiff. Skin mucus was analysed by 2D-gel electrophoresis, and proteins modulated by the bacterial infection identified. In the infected fish, significant increases in sacciform cells in skin and increased levels of nucleoside diphosphate kinase in mucus were detected at 4 hpi. At 96 hpi, goblet cells containing acidic mucins significantly increased in the intestine, while those containing mixed mucins increased in skin and gills of infected fish. Proteasome subunit alpha type-I and extracellular Cu/Zn superoxide dismutase levels also increased in mucus. Rodlet and mast cells did not appear to respond to the infection. Mucosal tissues of grouper appeared actively involved in response to Vibrio infection. This information may help future research on improving grouper health, production and vaccine development.
    Matched MeSH terms: Mast Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links