Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Sulaiman I, Lim JC, Soo HL, Stanslas J
    Pulm Pharmacol Ther, 2016 Oct;40:52-68.
    PMID: 27453494 DOI: 10.1016/j.pupt.2016.07.005
    Extensive research into the therapeutics of asthma has yielded numerous effective interventions over the past few decades. However, adverse effects and ineffectiveness of most of these medications especially in the management of steroid resistant severe asthma necessitate the development of better medications. Numerous drug targets with inherent airway smooth muscle tone modulatory role have been identified for asthma therapy. This article reviews the latest understanding of underlying molecular aetiology of asthma towards design and development of better antiasthma drugs. New drug candidates with their putative targets that have shown promising results in the preclinical and/or clinical trials are summarised. Examples of these interventions include restoration of Th1/Th2 balance by the use of newly developed immunomodulators such as toll-like receptor-9 activators (CYT003-QbG10 and QAX-935). Clinical trials revealed the safety and effectiveness of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonists such as OC0000459, BI-671800 and ARRY-502 in the restoration of Th1/Th2 balance. Regulation of cytokine activity by the use of newly developed biologics such as benralizumab, reslizumab, mepolizumab, lebrikizumab, tralokinumab, dupilumab and brodalumab are at the stage of clinical development. Transcription factors are potential targets for asthma therapy, for example SB010, a GATA-3 DNAzyme is at its early stage of clinical trial. Other candidates such as inhibitors of Rho kinases (Fasudil and Y-27632), phosphodiesterase inhibitors (GSK256066, CHF 6001, roflumilast, RPL 554) and proteinase of activated receptor-2 (ENMD-1068) are also discussed. Preclinical results of blockade of calcium sensing receptor by the use of calcilytics such as calcitriol abrogates cardinal signs of asthma. Nevertheless, successful translation of promising preclinical data into clinically viable interventions remains a major challenge to the development of novel anti-asthmatics.
    Matched MeSH terms: Translational Medical Research
  2. Lan YW, Theng SM, Huang TT, Choo KB, Chen CM, Kuo HP, et al.
    Stem Cells Transl Med, 2017 03;6(3):1006-1017.
    PMID: 28297588 DOI: 10.5966/sctm.2016-0054
    Mesenchymal stem cells (MSCs) are widely considered for treatment of pulmonary fibrosis based on the anti-inflammatory, antifibrotic, antiapoptotic, and regenerative properties of the cells. Recently, elevated levels of oncostatin M (OSM) have been reported in the bronchoalveolar lavage fluid of a pulmonary fibrosis animal model and in patients. In this work, we aimed to prolong engrafted MSC survival and to enhance the effectiveness of pulmonary fibrosis transplantation therapy by using OSM-preconditioned MSCs. OSM-preconditioned MSCs were shown to overexpress type 2 OSM receptor (gp130/OSMRβ) and exhibited high susceptibility to OSM, resulting in upregulation of the paracrine factor, hepatocyte growth factor (HGF). Moreover, OSM-preconditioned MSCs enhanced cell proliferation and migration, attenuated transforming growth factor-β1- or OSM-induced extracellular matrix production in MRC-5 fibroblasts through paracrine effects. In bleomycin-induced lung fibrotic mice, transplantation of OSM-preconditioned MSCs significantly improved pulmonary respiratory functions and downregulated expression of inflammatory factors and fibrotic factors in the lung tissues. Histopathologic examination indicated remarkable amelioration of the lung fibrosis. LacZ-tagged MSCs were detected in the lung tissues of the OSM-preconditioned MSC-treated mice 18 days after post-transplantation. Taken together, our data further demonstrated that HGF upregulation played an important role in mediating the therapeutic effects of transplanted OSM-preconditioned MSCs in alleviating lung fibrosis in the mice. Stem Cells Translational Medicine 2017;6:1006-1017.
    Matched MeSH terms: Translational Medical Research
  3. Wang M, Ling KH, Tan JJ, Lu CB
    Cells, 2020 06 18;9(6).
    PMID: 32570916 DOI: 10.3390/cells9061489
    Parkinson's Disease (PD) is a neurodegenerative disorder affecting the motor system. It is primarily due to substantial loss of midbrain dopamine (mDA) neurons in the substantia nigra pars compacta and to decreased innervation to the striatum. Although existing drug therapy available can relieve the symptoms in early-stage PD patients, it cannot reverse the pathogenic progression of PD. Thus, regenerating functional mDA neurons in PD patients may be a cure to the disease. The proof-of-principle clinical trials showed that human fetal graft-derived mDA neurons could restore the release of dopamine neurotransmitters, could reinnervate the striatum, and could alleviate clinical symptoms in PD patients. The invention of human-induced pluripotent stem cells (hiPSCs), autologous source of neural progenitors with less ethical consideration, and risk of graft rejection can now be generated in vitro. This advancement also prompts extensive research to decipher important developmental signaling in differentiation, which is key to successful in vitro production of functional mDA neurons and the enabler of mass manufacturing of the cells required for clinical applications. In this review, we summarize the biology and signaling involved in the development of mDA neurons and the current progress and methodology in driving efficient mDA neuron differentiation from pluripotent stem cells.
    Matched MeSH terms: Translational Medical Research
  4. Jeevaratnam K, Salvage SC, Li M, Huang CL
    Ann N Y Acad Sci, 2018 Dec;1433(1):18-28.
    PMID: 29846007 DOI: 10.1111/nyas.13861
    Alterations in cellular levels of the second messenger 3',5'-cyclic adenosine monophosphate ([cAMP]i ) regulate a wide range of physiologically important cellular signaling processes in numerous cell types. Osteoclasts are terminally differentiated, multinucleated cells specialized for bone resorption. Their systemic regulator, calcitonin, triggers morphometrically and pharmacologically distinct retraction (R) and quiescence (Q) effects on cell-spread area and protrusion-retraction motility, respectively, paralleling its inhibition of bone resorption. Q effects were reproduced by cholera toxin-mediated Gs -protein activation known to increase [cAMP]i , unaccompanied by the [Ca2+ ]i changes contrastingly associated with R effects. We explore a hypothesis implicating cAMP signaling involving guanine nucleotide-exchange activation of the small GTPase Ras-proximate-1 (Rap1) by exchange proteins directly activated by cAMP (Epac). Rap1 activates integrin clustering, cell adhesion to bone matrix, associated cytoskeletal modifications and signaling processes, and transmembrane transduction functions. Epac activation enhanced, whereas Epac inhibition or shRNA-mediated knockdown compromised, the appearance of markers for osteoclast differentiation and motility following stimulation by receptor activator of nuclear factor kappa-Β ligand (RANKL). Deficiencies in talin and Rap1 compromised in vivo bone resorption, producing osteopetrotic phenotypes in genetically modified murine models. Translational implications of an Epac-Rap1 signaling hypothesis in relationship to N-bisphosphonate actions on prenylation and membrane localization of small GTPases are discussed.
    Matched MeSH terms: Translational Medical Research
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links