Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. CHAN KHER ZHI, MOHD NIZAM LANI, MOHD NIZAM LANI, YUSNITA HAMZAH, FAUZIAH TUFAIL AHMAD, HAFIZAH NIK UBAIDILLAH
    MyJurnal
    Kefir is a fermented milk obtained by fermenting milk with kefir grains. The chemical composition ofdairy and non-dairy sources may affect the growth and characterisation of lactic acid bacteria (LAB). In this study, different sources of milk (cow milk) and non-dairy milk (soymilk and coconut milk) were used as the fermentation media for kefir products. The objectives of the study were to isolate and characterise LAB from kefir drink produced from dairy and non-dairy milk. LAB was isolated using different cultural methods, such as MRS Agar, MRS with 0.8% CaCO3, and M17 Agar. The characteristics of the LAB isolates were determined using morphological, biochemical tests and the API 50 CHL kit. The physicochemical composition of the samples was determined using titratable acidity and pH level. Sensory evaluation of the kefir drink samples was also carried out. Results confirmed that the isolates were identified as Lactobacillus buchneri, Lactobacillus brevis 1, Leuconostoc mesenteroides, Lactobacillus acidophilus 3and Lactobacillus plantarum 1. The L. buchneri, L. brevis, Leu. mesenteroides and L. acidophilus are heterofermentative bacteria, whereas L. plantarum is a homofermentative bacterium. Four LAB isolates have the potential to be used as probiotic strains due to their high resistant to low pH and bile salt. The sensory scores of these products range between 5.00 and 8.00 in the 9-point hedonic scale. Most of the sensory panelists preferred cow milk kefir (p < 0.05) compared with coconut milk kefir and soy milk kefir during the sensory evaluation of all attributes. Meanwhile, the preference between coconut milk kefir and soy milk kefir was similar (p>0.05) in all attributes. Therefore, this study will be useful for probiotic manufacturers in the production of alternative probiotic drinks using dairy and non-dairy milk.
    Matched MeSH terms: Soy Milk
  2. Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT
    Ultrason Sonochem, 2012 Jul;19(4):890-900.
    PMID: 22305107 DOI: 10.1016/j.ultsonch.2012.01.003
    This study aimed to evaluate the effects of ultrasound on Lactobacillus fermentum BT 8633 in parent and subsequent passages based on their growth and isoflavone bioconversion activities in biotin-supplemented soymilk. The treated cells were also assessed for impact of ultrasound on probiotic properties. The growth of ultrasonicated parent cells increased (P<0.05) by 3.23-9.14% compared to that of the control during fermentation in biotin-soymilk. This was also associated with enhanced intracellular and extracellular (8.4-17.0% and 16.7-49.2%, respectively; P<0.05) β-glucosidase specific activity, leading to increased bioconversion of isoflavones glucosides to aglycones during fermentation in biotin-soymilk compared to that of the control (P<0.05). Such traits may be credited to the reversible permeabilized membrane of ultrasonicated parent cells that have facilitated the transport of molecules across the membrane. The growing characteristics of first, second and third passage of treated cells in biotin-soymilk were similar (P>0.05) to that of the control, where their growth, enzyme and isoflavone bioconversion activities (P>0.05) were comparable. This may be attributed to the temporary permeabilization in the membrane of treated cells. Ultrasound affected probiotic properties of parent L. fermentum, by reducing tolerance ability towards acid (pH 2) and bile; lowering inhibitory activities against selected pathogens and reducing adhesion ability compared to that of the control (P<0.05). The first, second and third passage of treated cells did not exhibit such traits, with the exception of their bile tolerance ability which was inherited to the first passage (P<0.05). Our results suggested that ultrasound could be used to increase bioactivity of biotin-soymilk via fermentation by probiotic L. fermentum FTDC 8633 for the development of functional food.
    Matched MeSH terms: Soy Milk/metabolism*; Soy Milk/chemistry
  3. Ewe JA, Wan Abdullah WN, Bhat R, Karim AA, Liong MT
    Ultrason Sonochem, 2012 Jan;19(1):160-73.
    PMID: 21775184 DOI: 10.1016/j.ultsonch.2011.06.013
    This study aimed at utilizing ultrasound treatment to further enhance the growth of lactobacilli and their isoflavone bioconversion activities in biotin-supplemented soymilk. Strains of lactobacilli (Lactobacillus acidophilus BT 1088, L. fermentum BT 8219, L. acidophilus FTDC 8633, L. gasseri FTDC 8131) were treated with ultrasound (30 kHz, 100 W) at different amplitudes (20%, 60% and 100%) for 60, 120 and 180 s prior to inoculation and fermentation in biotin-soymilk. The treatment affected the fatty acids chain of the cellular membrane lipid bilayer, as shown by an increased lipid peroxidation (P<0.05). This led to increased membrane fluidity and subsequently, membrane permeability (P<0.05). The permeabilized cellular membranes had facilitated nutrient internalization and subsequent growth enhancement (P<0.05). Higher amplitudes and longer durations of the treatment promoted growth of lactobacilli in soymilk, with viable counts exceeding 9 log CFU/mL. The intracellular and extracellular β-glucosidase specific activities of lactobacilli were also enhanced (P<0.05) upon ultrasound treatment, leading to increased bioconversion of isoflavones in soymilk, particularly genistin and malonyl genistin to genistein. Results from this study show that ultrasound treatment on lactobacilli cells promotes (P<0.05) the β-glucosidase activity of cells for the benefit of enhanced (P<0.05) isoflavone glucosides bioconversion to bioactive aglycones in soymilk.
    Matched MeSH terms: Soy Milk/metabolism*; Soy Milk/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links