Displaying publications 41 - 44 of 44 in total

Abstract:
Sort:
  1. Joshi G, Ling APK, Chye SM, Koh RY
    CNS Neurol Disord Drug Targets, 2023;22(3):431-440.
    PMID: 35400348 DOI: 10.2174/1871527321666220408105130
    The behavior of an individual changes from neonate to elderly due to the development of the central nervous system (CNS). One of the important components of the CNS is the cerebrospinal fluid (CSF), which bathes the brain and spinal cord. CSF has changing properties throughout life, including composition and volume imbalance. However, a specific age group that shows prevailing abnormality- corresponding behavior remains unclear. The objective of this article is to explore how such changes reflect on one's psychological as well as physical processing. Production of CSF could be affected by many factors, including its flow, absorption, volume, and composition. Prenatally, congenital malformations and infections hold the greatest risk of impacting the child's physical and mental growth. In adolescents, transmission of external substances like alcohol or drugs in the cerebrospinal fluid is known to impact severe mood changes that potentially result in suicide and depression. In the adult working population, the influence of stress levels on CSF composition causes anxiety and sleep disorders. Finally, the reduced production of CSF was found to be associated with memory deficits and Alzheimer's disease in the aging group. From the collected evidence, it can be observed that CSF played an important role in behavioral changes and may be associated with neurodegenerations. By linking the CSF abnormalities to the clinical symptoms at different stages of life, it may provide additional information in the diagnosis of diseases that are associated with neuropsychological changes.
  2. Ko Y, Ngai ZN, Koh RY, Chye SM
    Tuberc Respir Dis (Seoul), 2023 Apr;86(2):102-110.
    PMID: 36597582 DOI: 10.4046/trd.2022.0125
    Coronavirus disease 2019 (COVID-19) has become a major health burden worldwide, with over 600 million confirmed cases and 6 million deaths by 15 December 2022. Although the acute phase of COVID-19 management has been established, the long-term clinical course and complications due to the relatively short outbreak is yet to be assessed. The current COVID-19 pandemic is causing significant morbidity and mortality around the world. Interestingly, epidemiological studies have shown that fatality rates vary considerably across different countries, and men and elderly patients are at higher risk of developing severe diseases. There is increasing evidence that COVID-19 infection causes neurological deficits in a substantial proportion to patients suffering from acute respiratory distress syndrome. Furthermore, lack of physical activity and smoking are associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) susceptibility. We should therefore explore why lack of physical activity, smoking, etc causing a population more susceptible to SARS-CoV-2 infection, and mechanism involved. Thus, in this review article, we summarize epidemiological evidence related to risk factors and lifestyle that affect COVID-19 severity and the mechanism involved. These risk factors or lifestyle interventions include smoking, cardiovascular health, obesity, exercise, environmental pollution, psychosocial social stress, and diet.
  3. Leong YQ, Koh RY, Chye SM, Ng KY
    Biol Chem, 2023 May 25;404(6):551-567.
    PMID: 36634094 DOI: 10.1515/hsz-2022-0228
    Increase evidence from epidemiological studies have shown an inverse association between Parkinson's disease (PD) and lung cancer. PD and lung cancer are both geriatric diseases, where these two diseases are sharing some common genetic determinants. Several PD-associated genes including alpha synuclein (SNCA), PTEN-induced kinase 1 (PINK1), parkin, parkinsonism associated deglycase (DJ-1), leucine-rich repeat kinase 2 (LRRK2), F-box protein 7 (FBXO7) and ubiquitin C-terminal hydrolase L1 (UCHL1) were reported to have altered expressions in lung cancer patients. This indicates that certain PD-associated genes might be important in conferring anticancer effects. This review aims to depict the physiological functions of these genes, and discuss the putative roles of these PD-associated genes in lung cancer. The understanding of the roles of these genes in the lung cancer progression might be important in the identification of new treatment targets for lung cancer. Gene therapy that aims to alter the expressions of these genes could be developed for future anticancer therapy. As a result, studying the roles of these genes in lung cancer may also help to understand their involvements as well as their roles in the pathogenesis of PD.
  4. Khor SLQ, Ng KY, Koh RY, Chye SM
    CNS Neurol Disord Drug Targets, 2024;23(3):315-330.
    PMID: 36999187 DOI: 10.2174/1871527322666230330093829
    The blood-brain barrier (BBB) plays a crucial role in the central nervous system by tightly regulating the influx and efflux of biological substances between the brain parenchyma and peripheral circulation. Its restrictive nature acts as an obstacle to protect the brain from potentially noxious substances such as blood-borne toxins, immune cells, and pathogens. Thus, the maintenance of its structural and functional integrity is vital in the preservation of neuronal function and cellular homeostasis in the brain microenvironment. However, the barrier's foundation can become compromised during neurological or pathological conditions, which can result in dysregulated ionic homeostasis, impaired transport of nutrients, and accumulation of neurotoxins that eventually lead to irreversible neuronal loss. Initially, the BBB is thought to remain intact during neurodegenerative diseases, but accumulating evidence as of late has suggested the possible association of BBB dysfunction with Parkinson's disease (PD) pathology. The neurodegeneration occurring in PD is believed to stem from a myriad of pathogenic mechanisms, including tight junction alterations, abnormal angiogenesis, and dysfunctional BBB transporter mechanism, which ultimately causes altered BBB permeability. In this review, the major elements of the neurovascular unit (NVU) comprising the BBB are discussed, along with their role in the maintenance of barrier integrity and PD pathogenesis. We also elaborated on how the neuroendocrine system can influence the regulation of BBB function and PD pathogenesis. Several novel therapeutic approaches targeting the NVU components are explored to provide a fresh outlook on treatment options for PD.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links