This study utilized faradaic and non-faradaic electrochemical impedance spectroscopy to detect alpha synuclein amyloid fibrils on gold interdigitated tetraelectrodes (AuIDTE), providing valuable insights into electrochemical reactions for clinical use. AuIDE was purchased, modified with zinc oxide for increased hydrophobicity. Functionalization was conducted with hexacyanidoferrate and carbonyldiimidazole. Faradaic electrochemical impedance spectroscopy has been extensively explored in clinical diagnostics and biomedical research, providing information on the performance and stability of electrochemical biosensors. This understanding can help develop more sensitive, selective, and reliable biosensing platforms for the detection of clinically relevant analytes like biomarkers, proteins, and nucleic acids. Non-faradaic electrochemical impedance spectroscopy measures the interfacial capacitance at the electrode-electrolyte interface, eliminating the need for redox-active species and simplifying experimental setups. It has practical implications in clinical settings, like real-time detection and monitoring of biomolecules and biomarkers by tracking changes in interfacial capacitance. The limit of detection (LOD) for normal alpha synuclein in faradaic mode is 2.39-fM, The LOD for aggregated alpha synuclein detection is 1.82-fM. The LOD for non-faradaic detection of normal alpha synuclein is 2.22-fM, and the LOD for nonfaradaic detection of aggregated alpha synuclein is 2.40-fM. The proposed EIS-based AuIDTEs sensor detects alpha synuclein amyloid fibrils and it is highly sensitive.
Cardiovascular diseases (CVDs) are one of the major reasons for deaths globally. The renin-angiotensin-aldosterone system (RAAS) regulates body hypertension and fluid balance which causes CVD. Angiotensin-converting enzyme I (ACE I) is the central Zn-metallopeptidase component of the RAAS playing a crucial role in maintaining homeostasis of the cardiovascular system. The available drugs to treat CVD have many side effects, and thus, there is a need to explore phytocompounds and peptides to be utilized as alternative therapies. Soybean is a unique legume cum oilseed crop with an enriched source of proteins. Soybean extracts serve as a primary ingredient in many drug formulations against diabetes, obesity, and spinal cord-related disorders. Soy proteins and their products act against ACE I which may provide a new scope for the identification of potential scaffolds that can help in the design of safer and natural cardiovascular therapies. In this study, the molecular basis for selective inhibition of 34 soy phytomolecules (especially of beta-sitosterol, soyasaponin I, soyasaponin II, soyasaponin II methyl ester, dehydrosoyasaponin I, and phytic acid) was evaluated using in silico molecular docking approaches and dynamic simulations. Our results indicate that amongst the compounds, beta-sitosterol exhibited a potential inhibitory action against ACE I.