Displaying publications 41 - 44 of 44 in total

Abstract:
Sort:
  1. Runtuwene LR, Sathirapongsasuti N, Srisawat R, Komalamisra N, Tuda JSB, Mongan AE, et al.
    BMC Res Notes, 2022 Feb 12;15(1):44.
    PMID: 35151353 DOI: 10.1186/s13104-022-05927-2
    OBJECTIVE: To disseminate the portable sequencer MinION in developing countries for the main purpose of battling infectious diseases, we found a consortium called Global Research Alliance in Infectious Diseases (GRAID). By holding and inviting researchers both from developed and developing countries, we aim to train the participants with MinION's operations and foster a collaboration in infectious diseases researches. As a real-life example in which resources are limited, we describe here a result from a training course, a metagenomics analysis from two blood samples collected from a routine cattle surveillance in Kulan Progo District, Yogyakarta Province, Indonesia in 2019.

    RESULTS: One of the samples was successfully sequenced with enough sequencing yield for further analysis. After depleting the reads mapped to host DNA, the remaining reads were shown to map to Theileria orientalis using BLAST and OneCodex. Although the reads were also mapped to Clostridium botulinum, those were found to be artifacts derived from the cow genome. An effort to construct a consensus sequence was successful using a reference-based approach with Pomoxis. Hence, we concluded that the asymptomatic cow might be infected with T. orientalis and showed the usefulness of sequencing technology, specifically the MinION platform, in a developing country.

  2. Low SY, Lau SF, Ahmad NI, Sharma RSK, Rosli MZ, Mohd-Taib FS, et al.
    Zoonoses Public Health, 2023 Nov;70(7):636-646.
    PMID: 37403513 DOI: 10.1111/zph.13072
    Angiostrongylus malaysiensis is a potential zoonotic parasite, which reported to co-occur with A. cantonensis in human cerebrospinal fluid. It is a heteroxenous nematode that primarily develops through the early larval stages in gastropods and attains sexual maturity within rats. This study was conducted to determine the host species responsible for the reservoir of A. malaysiensis and investigate the risk factor for transmission among the hosts in Kuala Lumpur, Malaysia. Sampling was conducted in six recreational parks. The rats were trapped alive using steel wire traps with bait, while the gastropods were collected by active searching. The rats were euthanized and dissected to collect any adult worms observed. The molecular detection of A. malaysiensis was performed by PCR on gastropod tissue samples. Biotic and landscape factors were recorded for risk factor analysis. In total, 82 rats and 330 gastropods were collected throughout the study. Overall, 3.64% of gastropods and 32.9% of rats were infected with A. malaysiensis. Rattus tiomanicus (Malayan wood rat) and Parmarion martensi (Yellow-shelled semi-slug) were found as important hosts for A. malaysiensis. Host species, sampling site and macrohabitat type are risk factors associated with the prevalence of A. malaysiensis infection in rats. For gastropods, host species and sampling site are risk factors that correlate with the parasite detection. In total, 128 adult A. malaysiensis were recovered from the infected rats. The mean intensity of infection with adult A. malaysiensis was 4.65 for Rattus rattus complex and 4.90 for R. tiomanicus. Adult worms were found in the pulmonary artery or right ventricle, while eggs and first-stage larvae were found in capillaries of the caudal lung lobe. Infected lungs showed extravasated red blood cells in the alveolar spaces. The pulmonary arteries in the infected lung lobe were thickened. Kepong Metropolitan Park is the hotspot area for A. malaysiensis in Kuala Lumpur. These results provide essential information for public health officials to develop targeted interventions to reduce the transmission of A. malaysiensis in urban areas, particularly in recreational parks.
  3. Ling KH, Rajandream MA, Rivailler P, Ivens A, Yap SJ, Madeira AM, et al.
    Genome Res, 2007 Mar;17(3):311-9.
    PMID: 17284678
    Eimeria tenella is an intracellular protozoan parasite that infects the intestinal tracts of domestic fowl and causes coccidiosis, a serious and sometimes lethal enteritis. Eimeria falls in the same phylum (Apicomplexa) as several human and animal parasites such as Cryptosporidium, Toxoplasma, and the malaria parasite, Plasmodium. Here we report the sequencing and analysis of the first chromosome of E. tenella, a chromosome believed to carry loci associated with drug resistance and known to differ between virulent and attenuated strains of the parasite. The chromosome--which appears to be representative of the genome--is gene-dense and rich in simple-sequence repeats, many of which appear to give rise to repetitive amino acid tracts in the predicted proteins. Most striking is the segmentation of the chromosome into repeat-rich regions peppered with transposon-like elements and telomere-like repeats, alternating with repeat-free regions. Predicted genes differ in character between the two types of segment, and the repeat-rich regions appear to be associated with strain-to-strain variation.
  4. Reid AJ, Blake DP, Ansari HR, Billington K, Browne HP, Bryant J, et al.
    Genome Res, 2014 Oct;24(10):1676-85.
    PMID: 25015382 DOI: 10.1101/gr.168955.113
    Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases. Understanding the biology of Eimeria parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of Eimeria that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, Eimeria is home to a family of chromoviruses. Analysis of Eimeria genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links