Displaying publications 41 - 60 of 225 in total

Abstract:
Sort:
  1. Tehrany PM, Rahmanian P, Rezaee A, Ranjbarpazuki G, Sohrabi Fard F, Asadollah Salmanpour Y, et al.
    Environ Res, 2023 Dec 01;238(Pt 1):117087.
    PMID: 37716390 DOI: 10.1016/j.envres.2023.117087
    Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.
  2. Bharathi D, Ranjithkumar R, Nandagopal JGT, Djearamane S, Lee J, Wong LS
    Environ Res, 2023 Dec 01;238(Pt 1):117109.
    PMID: 37696324 DOI: 10.1016/j.envres.2023.117109
    The synthesis of polymer-encapsulated metal nanoparticles is a growing field of area due to their long-term uses in the development of new technologies. The present study describes the synthesis of chitosan/silver nanocomposite using kaempferol for anticancer and bactericidal activity. The formation of Kf-CS/Ag nanocomposite was confirmed by the development of a brown color and UV-absorbance around 438 nm. The IR study was utilized to determine the existence of Kf and CS in the synthesized nanocomposite. TEM analysis demonstrated that the synthesized nanocomposite have a predominantly uniform spherical shape and size ranges 7-10 nm. EDX spectrum showed the existence of Ag, C, and N elements in the nanocomposite material. Further, Kf-CS/Ag nanocomposite exhibited potential in vitro inhibitory property against triple-negative breast cancer (TNBC) cells and their IC50 values was found to be 53 μg/mL. Moreover, fluorescent assays such as DAPI and AO/EtBr confirmed the apoptosis induction ability of Kf-CS/Ag nanocomposite in MDA-MB-231 cells. The synthesized Kf-CS/Ag nanocomposite showed significant and dose-depended antibacterial property against S. aureus and P. aeruginosa. Thus, the obtained findings demonstrated that the synthesized nanocomposite can be potentially used to improve human health as biocidal nanocomposite in biomedical sectors.
  3. Bapat RA, Bedia SV, Bedia AS, Yang HJ, Dharmadhikari S, Abdulla AM, et al.
    Environ Res, 2023 Dec 01;238(Pt 1):116971.
    PMID: 37717805 DOI: 10.1016/j.envres.2023.116971
    Curcumin is a natural herb and polyphenol that is obtained from the medicinal plant Curcuma longa. It's anti-bacterial, anti-inflammatory, anti-cancer, anti-mutagenic, antioxidant and antifungal properties can be leveraged to treat a myriad of oral and systemic diseases. However, natural curcumin has weak solubility, limited bioavailability and undergoes rapid degradation, which severely limits its therapeutic potential. To overcome these drawbacks, nanocurcumin (nCur) formulations have been developed for improved biomaterial delivery and enhanced treatment outcomes. This novel biomaterial holds tremendous promise for the treatment of various oral diseases, the majority of which are caused by dental biofilm. These include dental caries, periodontal disease, root canal infection and peri-implant diseases, as well as other non-biofilm mediated oral diseases such as oral cancer and oral lichen planus. A number of in-vitro studies have demonstrated the antibacterial efficacy of nCur in various formulations against common oral pathogens such as S. mutans, P. gingivalis and E. faecalis, which are strongly associated with dental caries, periodontitis and root canal infection, respectively. In addition, some clinical studies were suggestive of the notion that nCur can indeed enhance the clinical outcomes of oral diseases such as periodontitis and oral lichen planus, but the level of evidence was very low due to the small number of studies and the methodological limitations of the available studies. The versatility of nCur to treat a diverse range of oral diseases augurs well for its future in dentistry, as reflected by rapid pace in which studies pertaining to this topic are published in the scientific literature. In order to keep abreast of the latest development of nCur in dentistry, this narrative review was undertaken. The aim of this narrative review is to provide a contemporaneous update of the chemistry, properties, mechanism of action, and scientific evidence behind the usage of nCur in dentistry.
  4. Korrani ZS, Khalili E, Kamyab H, Wan Ibrahim WA, Hashim H
    Environ Res, 2023 Dec 01;238(Pt 2):117167.
    PMID: 37722580 DOI: 10.1016/j.envres.2023.117167
    In this work, a simple sol-gel approach was used for the preparation of cyanopropyl (CNPr) functionalized silica nanoparticles (SiO2-CNPr) that tetraethoxysilane (TEOS) and cyanopropyltriethoxysilane (CNPrTEOS) used as precursors. This as-prepared SiO2-CNPr nanoparticle sorbent was first characterized using FESEM, EDX, FTIR, TGA, and BET techniques. Then, the SiO2-CNPr nanoparticle was applied as a new SPE sorbent for determining trace levels of OPPs in environmental water samples. To enhance the simultaneous extraction of non-polar or/and polar OPPs and to obtain the most efficient sorbent, several sol-gel synthesis parameters were studied. In addition, the effect of several effective parameters on SPE performance was investigated toward simultaneous extraction of non-polar or/and polar OPPs. Moreover, the figures of merit such as precision, linearity, LOQ, LOD, and recovery were evaluated for the sorbent. Finally, the designed SiO2-CNPr SPE was used to determine OPPs in real water samples, and its extraction performance was compared to commercial cartridges based on cyanopropyl.
  5. Zaidi Farouk MIH, Jamil Z, Abdul Latip MF
    Environ Res, 2023 Dec 01;238(Pt 1):117147.
    PMID: 37716398 DOI: 10.1016/j.envres.2023.117147
    The exponential growth of human population and anthropogenic activities have led to the increase of global surface water contamination especially in river, lakes and ocean. Safe and clean surface water sources are crucial to human health and well-being, aquatic ecosystem, environment and economy. Thus, water monitoring is vital to ensure minimal and controllable contamination in the water sources. The conventional surface water monitoring method involves collecting samples on site and then testing them in the laboratory, which is time-consuming and not able to provide real-time water quality data. In addition, it involves many manpower and resources, costly and lack of integration. These make surface water quality monitoring more challenging. The incorporation of Internet of Things (IoT) and smart technology has contributed to the improvement of monitoring system. There are different approaches in the development and implementation of online surface water quality monitoring system to provide real-time data collection with lower operating cost. This paper reviews the sensors and system developed for the online surface water quality monitoring system in the previous studies. The calibration and validation of the sensors, and challenges in the design and development of online surface water quality monitoring system are also discussed.
  6. Sheikh A, Hazari SA, Molugulu N, Alshehri SA, Wahab S, Sahebkar A, et al.
    Environ Res, 2023 Dec 01;238(Pt 1):117086.
    PMID: 37683783 DOI: 10.1016/j.envres.2023.117086
    Psoriasis is a deleterious auto-immune disorder which seriously harms the patients physical and mental health. CD44 are found to be over-expressed on psoriatic lesions which are highly responsible for epidermal hyperproliferation and inflammation. Gallic acid (GA), a phenolic acid natural compound has potential inhibitory impact on pro-inflammatory transcription factors. However, the penetration across skin and availability is low when applied topically, making the treatment extremely challenging. Considering such factors, we developed GA loaded chitosan nanoparticles and modified with hyaluronic acid (HA) (HA@CS-GA NP) to assess the therapeutic potential against psoriasis. The formulations were characterized by DSC, zetasizer and TEM for assuring the development of nanosystems. GA loaded CS NP had a particle size of 207.2 ± 0.08 nm while after coating with HA, the size increased to 220.1 ± 0.18 nm. The entrapment efficiency was 93.24 ± 0.132% and drug loading of 73.17 ± 0.23%. The in vitro cell viability assessment study confirmed enhanced anti-proliferative effect of HA@CS-GA NP over plain GA which is due to high sensitivity towards HaCaT cell. The in vivo results on imiquimod induced psoriasis model indicated that CD44 receptor mediated targeted approach of HA@CS-GA NP gel had great potential in restricting the keratinocyte hyperproliferation and circumventing psoriasis. For the therapy of further skin-related conditions, HA modified nanoparticles should be investigated extensively employing genes, antibodies, chemotherapeutics, or natural substances.
  7. Azmi MA, Mokhtar K, Osnin NA, Razali Chan S, Albasher G, Ali A, et al.
    Environ Res, 2023 Dec 01;238(Pt 1):117074.
    PMID: 37678506 DOI: 10.1016/j.envres.2023.117074
    Coastal ecosystems play an important part in mitigating the effects of climate change. Coastal ecosystems are becoming more susceptible to climate change impacts due to human activities and maritime accidents. The global shipping industry, especially in Southeast Asia, has witnessed numerous accidents, particularly involving passenger ferries, resulting in injuries and fatalities in recent years. In order to mitigate the impact of climate change on coastal ecosystems, this study aimed to evaluate the relationship between employees' perceptions of safety criteria and their own safety behaviour on Langkawi Island, Malaysia. A straightforward random sampling technique was employed to collect data from 112 ferry employees aboard Malaysian-registered passenger boats by administering questionnaires. The findings shed light on the strong connection between providing safety instructions for passengers and safety behaviour among ferry workers. Safety instructions should contain climate-related information to successfully address the effects of climate change. The instructions might include guidance on responding to extreme weather events and understanding the potential consequences of sea-level rise on coastal communities. The ferry company staff should also expand their safe behaviour concept to include training and preparation for climate-related incidents. The need to recognise the interconnectedness between climate change, ferry safety and the protection of coastal ecosystems is emphasised in this study. The findings can be utilised by policymakers, regulatory agencies and ferry operators to design holistic policies that improve safety behaviour, minimise maritime mishaps and preserve the long-term sustainability of coastal ecosystems in the face of difficulties posed by climate change.
  8. Mulk WU, Hassan Shah MU, Shah SN, Zhang QJ, Khan AL, Sheikh M, et al.
    Environ Res, 2023 Nov 15;237(Pt 1):116879.
    PMID: 37579965 DOI: 10.1016/j.envres.2023.116879
    The main obstacles in adopting solvent-based CO2 capture technology from power plant flue gases at the industrial scale are the energy requirements for solvent regeneration and their toxicity. These challenges can be overcome using new green and more stable ionic liquids (ILs) as solvents for post-combustion CO2 capture. In the current study, tributyl-tetradecyl-phosphonium chloride [P44414][Cl] as an IL, was immobilized on hydrophobic porous supports of polypropylene (PP), polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTFE) at 298 ± 3 K and pressures up to 2 bar. The surface morphology indicated homogenous immobilization of the IL on the membrane support. Supported ionic liquid membranes (SILMs) were tested for CO2 permeability and CO2/N2 selectivity. None of the SILMs exhibited IL leaching up to 2 bar. The PTFE-based SILM performed better than other supports with minimum loss in water contact angle (WCA) and achieved good antiwetting with a maximum CO2 permeability and selectivity over N2 of 2300 ± 139 Barrer and 31.60 ± 2.4, respectively. This work achieves CO2 permeability about two-fold more than other works having CO2/N2 selectivity range of 25-35 in similar SILMs. The diffusivity of CO2 and N2 in [P44414][Cl] was measured as 3.64 ± 0.18 and 2.01 ± 0.09 [10-8 cm2 s-1] and CO2 and N2 solubility values were 9.79 ± 0.47 and 0.19 ± 0.001 [10-2 cm3(STP) cm-3 cmHg-1], respectively. The high values of Young's modulus and tensile strength of the PTFE support-based SILM (234 ± 12 MPa and 6.07 ± 0.31 MPa, respectively) indicated the long-term application of SILM in flue gas separation. The results indicated phosphonium chloride-based ILs could be better solvent candidates for CO2 removal from large volumes of flue gases than amine-based ILs.
  9. Vinayagam V, Kishor Kumar NK, Palani KN, Ganesh S, Kushwaha OS, Pugalenthi A
    Environ Res, 2023 Nov 04.
    PMID: 37931737 DOI: 10.1016/j.envres.2023.117549
    Since ecosystems are becoming inherently polluted, long-term contaminant removal methods are required. Electrodeionization, in particular, has recently been demonstrated as an effective approach for eliminating ionic compounds from contaminated water sources. Being a more environmentally friendly technology is most likely the main reason for its eminence. It uses electricity to replace toxic contaminants that are conventionally used to regenerate and hence reducing the toxins associated with resin regeneration. In wastewater treatment, continuous electrodeionization system overcomes several limitations of ion exchange resins, notably ion dumping. This prospective assessment delves into the mechanism, principle, and theory of electrodeionization system. It also focused on the design and applications, particularly in the removal of toxic compounds, as well as current advances in the electrodeionization system. Recent breakthroughs in electrodeionization were comprehensively discussed. Further developments in electrodeionization systems are also projected, with improved efficiency at the time of functioning at lower costs because of reduced energy use, proving them desirable for commercial usage with a broad array of applications across the globe.
  10. Thodhal Yoganandham S, Hamid N, Junaid M, Duan JJ, Pei DS
    Environ Res, 2023 Nov 01;236(Pt 2):116858.
    PMID: 37562740 DOI: 10.1016/j.envres.2023.116858
    Micro (nano)plastics (MNPs) are pollutants of worldwide concern for their ubiquitous environmental presence and associated impacts. The higher consumption of MNPs contaminated commercial food can cause potential adverse human health effects. This review highlights the evidence of MNPs in commercial food items and summarizes different sampling, extraction, and digestion techniques for the isolation of MNPs, such as oxidizing digestion, enzymatic digestion, alkaline digestion and acidic digestion. Various methods for the characterization and quantification of microplastics (MPs) are also compared, including μ-Raman spectroscopy, μ-Fourier transform infrared spectroscopy (FTIR), thermal analysis and Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). Finally, we share our concerns about the risks of MNPs to human health through the consumption of commercial seafood. The knowledge of the potential human health impacts at a subcellular or molecular level of consuming mariculture products contaminated with MNPs is still limited. Moreover, MNPs are somewhat limited, hard to measure, and still contentious. Due to the nutritional significance of fish consumption, the risk of exposure to MNPs and the associated health effects are of the utmost importance.
  11. Bhadola P, Chaudhary V, Markandan K, Talreja RK, Aggarwal S, Nigam K, et al.
    Environ Res, 2023 Nov 01;236(Pt 1):116646.
    PMID: 37481054 DOI: 10.1016/j.envres.2023.116646
    The mutating SARS-CoV-2 necessitates gauging the role of airborne particulate matter in the COVID-19 outbreak for designing area-specific regulation modalities based on the environmental state-of-affair. To scheme the protocols, the hotspots of air pollutants such as PM2.5, PM10, NH3, NO, NO2, SO2, and and environmental factors including relative humidity (RH), and temperature, along with COVID-19 cases and mortality from January 2020 till December 2020 from 29 different ground monitoring stations spanning Delhi, are mapped. Spearman correlation coefficients show a positive relationship between SARS-COV-2 with particulate matter (PM2.5 with r > 0.36 and PM10 with r > 0.31 and p-value <0·001). Besides, SARS-COV-2 transmission showed a substantial correlation with NH3 (r = 0.41), NO2 (r = 0.36), and NO (r = 0.35) with a p-value <0.001, which is highly indicative of their role in SARS-CoV-2 transmission. These outcomes are associated with the source of PM and its constituent trace elements to understand their overtone with COVID-19. This strongly validates temporal and spatial variation in COVID-19 dependence on air pollutants as well as on environmental factors. Besides, the bottlenecks of missing latent data, monotonous dependence of variables, and the role air pollutants with secondary environmental variables are discussed. The analysis set the foundation for strategizing regional-based modalities considering environmental variables (i.e., pollutant concentration, relative humidity, temperature) as well as urban and transportation planning for efficient control and handling of future public health emergencies.
  12. Jenila JS, Issac PK, Lam SS, Oviya JC, Jones S, Munusamy-Ramanujam G, et al.
    Environ Res, 2023 Nov 01;236(Pt 2):116810.
    PMID: 37532209 DOI: 10.1016/j.envres.2023.116810
    Gestagens are common pollutants accumulated in the aquatic ecosystem. Gestagens are comprised of natural gestagens (i.e. progesterone) and synthetic gestagens (i.e. progestins). The major contributors of gestagens in the environment are paper plant mill effluent, wastewater treatment plants, discharge from pharmaceutical manufacturing, and livestock farming. Gestagens present in the aquatic environment interact with progesterone receptors and other steroid hormone receptors, negatively influencing fish reproduction, development, and behavior. In fish, the gonadotropin induces 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) production, an important steroid hormone involved in gametogenesis. DHP interacts with the membrane progestin receptor (mPR), which regulates sperm motility and oocyte maturation. Gestagens also interfere with the hypothalamic-pituitary-gonadal (HPG) axis, which results in altered hormone levels in fish. Moreover, recent studies showed that even at low concentrations exposure to gestagens can have detrimental effects on fish reproduction, including reduced egg production, masculinization, feminization in males, and altered sex ratio, raising concerns about their impact on the fish population. This review highlights the hormonal regulation of sperm motility, oocyte maturation, the concentration of environmental gestagens in the aquatic environment, and their detrimental effects on fish reproduction. However, the long-term and combined impacts of multiple gestagens, including their interactions with other pollutants on fish populations and ecosystems are not well understood. The lack of standardized regulations and monitoring protocols for gestagens pollution in wastewater effluent hampers effective control and management. Nonetheless, advancements in analytical techniques and biomonitoring methods provide potential solutions by enabling better detection and quantification of gestagens in aquatic ecosystems.
  13. Sivaranjani SK, Durairaj K, Jayalakshmi G, Sumathi J, Balasubramanian B, Chelliapan S, et al.
    Environ Res, 2023 Nov 01;236(Pt 1):116692.
    PMID: 37500033 DOI: 10.1016/j.envres.2023.116692
    Semiconductor metal oxide with TiO2 nanoparticles removes hazardous compounds from environmental samples. TiO2 nanoparticles have shown potential as an efficient photocatalyst by being employed as a nano-catalyst for the breakdown of organic contaminants in wastewater samples. To separate substances from contaminated samples, combined UV and visible light irradiation has been used. Sol-gel synthesis was used to produce a copper chromite-titanium nanocomposite, which was then evaluated using analytical methods, such as XRD, BET, DRS-UV, and FT-IR. Using visible light, the photocatalytic activity of a nanocomposite made of CuCr2O4 and TiO2 was investigated for its role in the breakdown of malachite green. The effects of several parameters, including pH change, anions presence, contact time, catalyst amount, concentration variation, and the kinetics of photocatalytic degradation were investigated. The magnitude of transition energy calculated using UV-DRS spectra was found to be 3.1 eV for CuCr2O4-TiO2 nanocomposite. Maximum degradation was observed at pH 7.0. The surface area and pore volume of the co-doped samples of Cr2O4 - TiO2 obtained from BET were found to be 6.1213 m2/g and 0.045063 cm3/g respectively. The average particle size of the catalyst of the nano-catalysts calculated from XRD was found to be 8 nm for TiO2 and 66 nm for TiO2-CuCrO4. The peaks obtained in FTIR between the range of 900-500 cm-1 were due to the presence of an aromatic compound. The binding mechanism of a dye molecule to the surface of CuCr2O4-TiO2 nanocomposite was analysed using quantum chemical calculations with the self-consistent reaction field technique employing integral equation formalism for the polarized continuum method and the UFF atomic radii set.
  14. Xie Y, Gong L, Liu S, Yan J, Zhao S, Xia C, et al.
    Environ Res, 2023 Nov 01;236(Pt 1):116680.
    PMID: 37500036 DOI: 10.1016/j.envres.2023.116680
    Microbial degradation of pesticide residues has the potential to reduce their hazards to human and environmental health. However, in some cases, degradation can activate pesticides, making them more toxic to microbes. Here we report on the β-cypermethrin (β-CY) toxicity to Bacillus cereus GW-01, a recently described β-CY degrader, and effects of antioxidants on β-CY degradation. GW-01 exposed to β-CY negatively affected the growth rate. The highest maximum specific growth rate (μm) appeared at 25 mg/L β-CY. β-CY induced the oxidative stress in GW-01. The activities of superoxide dismutase (SOD), catalyse (CAT), and glutathione-S-transferase (GST) were significantly higher than that in control (p 
  15. Gnanasekaran L, Manoj D, Rajendran S, Gracia F, Jalil AA, Chen WH, et al.
    Environ Res, 2023 Nov 01;236(Pt 2):116790.
    PMID: 37517483 DOI: 10.1016/j.envres.2023.116790
    The present study highlights the treatment of industrial effluent, which is one of the most life-threatening factors. Herein, for the first time, two types of NiO (green and black) photocatalysts were prepared by facile chemical precipitation and thermal decomposition methods separately. The synthesized NiO materials were demonstrated with various instrumental techniques for finding their characteristics. The X-ray diffraction studies (XRD) and X-ray photoelectron spectroscopy (XPS) revealed the presence of Ni2O3 in black NiO material. The transmission electron microscopic (TEM) images engrained the nanospherical shaped green NiO and nanoflower shaped black NiO/Ni2O3 materials. Further, the band gap of black NiO nanoflower was 2.9 eV compared to green NiO having 3.8 eV obtained from UV-vis spectroscopy. Meanwhile, both NiO catalysts were employed for visible light degradation, which yields a 60.3% efficiency of black NiO comparable to a 4.3% efficiency of green NiO within 180 min of exposure. The higher degrading efficiency of black NiO was due to the presence of Ni2O3 and the development of pores, which was evident from the Barrett-Joyner-Halenda (BJH) method. Type IV hysteresis was observed in black NiO nanoflowers with high surface area and pore size measurements. This black NiO/Ni2O3 synthesized from the thermal decomposition method has promoted better photocatalytic degradation of 4-chlorophenol upon exposure to visible light and is applicable for other industrial pollutants.
  16. Parveen N, Sheikh A, Molugulu N, Annadurai S, Wahab S, Kesharwani P
    Environ Res, 2023 Nov 01;236(Pt 2):116850.
    PMID: 37558118 DOI: 10.1016/j.envres.2023.116850
    Atopic dermatitis is one of the most widespread chronic inflammatory skin conditions that can occur at any age, though the prevalence is highest in children. The purpose of the current study was to prepare and optimize the azelaic acid (AzA) loaded SNEDDS using Pseudo ternary phase diagram, which was subsequently incorporated into the Carbopol 940 hydrogel for the treatment of atopic dermatitis. The composition was evaluated for size, entrapment efficiency, in vitro, ex vivo, and in vivo studies. The polydispersity index of the optimized preparation was found to be less than 0.5, and the size of the distributed globules was found to be 151.20 ± 3.67 nm. The SNEDDS hydrogel was characterized for pH, viscosity, spreadability, and texture analysis. When compared to the marketed formulation, SNEDDS hydrogel was found to have a higher rate of permeation through the rat skin. In addition, a skin irritation test carried out on experimental animals showed that the SNEDDS formulation did not exhibit any erythematous symptoms after a 24-h exposure. In conclusion, the topical delivery of AzA through the skin using SNEDDS hydrogel could prove to be an effective approach for the treatment of atopic dermatitis.
  17. Pandion K, Dowlath MJH, Arunachalam KD, Abd-Elkader OH, Yadav KK, Nazir N, et al.
    Environ Res, 2023 Oct 15;235:116611.
    PMID: 37437863 DOI: 10.1016/j.envres.2023.116611
    The current study aims to investigate the influence of seasonal changes on the pollution loads of the sediment of a coastal area in terms of its physicochemical features. The research will focus on analyzing the nutrients, organic carbon and particle size of the sediment samples collected from 12 different sampling stations in 3 different seasons along the coastal area. Additionally, the study discusses about the impact of anthropogenic activities such as agriculture and urbanization and natural activities such as monsoon on the sediment quality of the coastal area. The nutrient changes in the sediment were found to be: pH (7.96-9.45), EC (2.89-5.23 dS/m), nitrogen (23.98-57.23 mg/kg), phosphorus (7.75-11.36 mg/kg), potassium (217-398 mg/kg), overall organic carbon (0.35-0.99%), and sediment proportions (8.91-9.3%). Several statistical methods were used to investigate changes in sediment quality. According to the three-way ANOVA test, the mean value of the sediments differs significantly with each season. It correlates significantly with principal factor analysis and cluster analysis across seasons, implying contamination from both natural and man-made sources. This study will contribute to developing effective management strategies for the protection and restoration of degraded coastal ecosystem.
  18. Saputra E, Prawiranegara BA, Nugraha MW, Oh WD, Sugesti H, Evelyn, et al.
    Environ Res, 2023 Oct 01;234:116441.
    PMID: 37331558 DOI: 10.1016/j.envres.2023.116441
    Three specific catalysts, namely ZIF-67 (zeolitic imidazolate framework-67), Co@NCF (Co@Nitrogen-Doped Carbon Framework), and 3D NCF (Three-Dimensional Nitrogen-Doped Carbon Framework), were prepared and studied for pulp and paper mill effluent degradation using heterogeneous activation of peroxymonosulfate (PMS). Numerous characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and N2 adsorption, were used to characterize the properties of three different catalysts. 3D NCF is remarkably effective at heterogeneous activation of PMS to generate sulfate radicals to degrade pulp and paper mill effluent (PPME) compared to the other as-prepared catalysts. The catalytic activity reveals a sequence of 3D NCF > Co@NCF > ZIF-67.3D NCF could degrade organic pollutants in 30 min at an initial COD concentration of 1146 mg/L of PPME, 0.2 g/L catalysts, 2 g/L PMS, and 50 °C. Consequently, it was observed that the degradation of PPME using 3D NCF followed first-order kinetics, with an activation energy of 40.54 kJ mol-1. Overall, 3D NCF/PMS system reveals promising performance for PPME removal.
  19. Bostan N, Ilyas N, Akhtar N, Mehmood S, Saman RU, Sayyed RZ, et al.
    Environ Res, 2023 Oct 01;234:116523.
    PMID: 37422115 DOI: 10.1016/j.envres.2023.116523
    Plastic is now considered part and parcel of daily life due to its extensive usage. Microplastic (MP) pollution is becoming a growing worry and has been ranked as the second most critical scientific problem in the realm of ecology and the environment. Microplastics are smaller in size than the plastic and are more harmful to biotic and as well as abiotic environments. The toxicity of microplastic depends upon its shape and size and increases with an increase in its adsorption capacity and their toxicity. The reason behind their harmful nature is their small size and their large surface area-to-volume ratio. Microplastic can get inside fruits, vegetables, seeds, roots, culms, and leaves. Hence microplastic enters into the food chain. There are different entry points for microplastic to enter into the food chain. Such sources can include polluted food, beverages, spices, plastic toys, and household (packing, cooking, etc.). The concentration of microplastic in terrestrial environments is increasing day by day. Microplastic causes the destruction of soil structure; destroys soil microbiota, cause depletion of nutrients in the soil, and their absorption by plants decreases plant growth. Apart from other environmental problems caused by microplastic, human health is also badly affected by microplastic pollution present in the terrestrial environment. The presence of microplastics in the human body has been confirmed. Microplastic enters into the body of humans in different possible ways. According to their way of entering the body, microplastics cause different diseases in humans. MPs also cause negative effects on the human endocrine system. At the ecosystem level, the impacts of microplastic are interconnected and can disrupt ecological processes. Although recently different papers have been published on several aspects of the microplastic present in the terrestrial environment but there is no complete overview that focus on the interrelationship of MPs in plants, and soil and their effect on higher animals like a human. This review provides a completely detailed overview of existing knowledge about sources, occurrences, transport, and effects of microplastic on the food chain and soil quality and their ecotoxicological effects on plants and humans.
  20. Sharaf Aldeen EM, Jalil AA, Mim RS, Hatta AH, Hazril NIH, Chowdhury A, et al.
    Environ Res, 2023 Oct 01;234:116576.
    PMID: 37423362 DOI: 10.1016/j.envres.2023.116576
    Photocatalysis utilizing semiconductors offer a cost-effective and promising solution for the removal of pollutants. MXene and perovskites, which possess desirable properties such as a suitable bandgap, stability, and affordability, have emerged as a highly promising material for photocatalytic activity. However, the efficiency of MXene and perovskites is limited by their fast recombination rates and inadequate light harvesting abilities. Nonetheless, several additional modifications have been shown to enhance their performance, thereby warranting further exploration. This study delves into the fundamental principles of reactive species for MXene-perovskites. Various methods of modification of MXene-perovskite-based photocatalysts, including Schottky junction, Z-scheme and S-scheme are analyzed with regard to their operation, differences, identification techniques and reusability. The assemblance of heterojunctions is demonstrated to enhance photocatalytic activity while also suppressing charge carrier recombination. Furthermore, the separation of photocatalysts through magnetic-based methods is also investigated. Consequently, MXene-perovskite-based photocatalysts are seen as an exciting emerging technology that necessitates further research and development.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links