Displaying publications 41 - 60 of 86 in total

Abstract:
Sort:
  1. Manickavasagam G, Saaid M, Lim V, Saad MIZM, Azmi NAS, Osman R
    J Food Sci, 2023 Apr;88(4):1466-1481.
    PMID: 36922718 DOI: 10.1111/1750-3841.16535
    The popularity of Malaysian stingless bee honey is rising among health-conscious individuals; thus, chemical and physical evaluations of Malaysian stingless bee honey are vital to ensure the honey has achieved the optimum limits set by Malaysian and international regulatory standards so that it can be commercialized locally and internationally. Therefore, in the present study, the physicochemical characteristics (moisture content, total dissolved solids, pH, free acidity, electrical conductivity, and ash content), antioxidant properties (total phenolic and flavonoid contents), and 5-hydroxymethylfurfural (5-HMF) of Heterotrigona itama (H. itama) honey from different sites in Peninsular Malaysia were investigated. Subsequently, the correlation between these chemical and physical parameters was studied using Spearman correlation coefficients. The significant difference between H. itama honey from different topographical origins was studied using univariate analysis (one-way ANOVA followed by post hoc Tukey's test). The discrimination pattern of 45 honey samples based on their topographical origins was evaluated using cluster analysis (heatmap and dendrogram) and chemometrics analysis (partial least squares-discriminant analysis). Results showed that some samples of certain parameters (electrical conductivity, free acidity, and moisture content) have exceeded the limit set by the international regulatory standard. However, the 5-HMF content of all samples was within the allowed range. A statistically significant difference (p 
  2. Manickavasagam G, Saaid M, Lim V
    J Food Sci, 2024 Feb;89(2):811-833.
    PMID: 38224177 DOI: 10.1111/1750-3841.16921
    This systematic review paper aims to discuss the trend in quality assessment properties and constituents of honey at different storage conditions and confer the possible whys and wherefores associated with the significant changes. Initially, a literature search was conducted through Google Scholar, ScienceDirect, PubMed, and Scopus databases. In total, 43 manuscripts published between 2001 and 2023 that met the inclusion and exclusion criteria were chosen for the review. As an outcome of this review, prolonged honey storage could deteriorate sensory, nutritional, and antioxidant properties and promote fermentation, granulation, microbial growth, carcinogenicity, organotoxicity, and nephrotoxicity. This systematic review also recognized that diastase activity, invertase activity, 5-hydroxymethylfurfural content, proline content, sugar content, amino acids, and vitamins could be used as indicators to distinguish fresh and stored honey based on the significant test (p-value) in the reported studies. However, all the reported studies used the simplest approach (one-way ANOVA) to identify the significant differences in the analyzed parameter during the storage period and none of them reported an approach to identify the most influential parameter at different storage conditions. In conclusion, orthogonal partial least squares discriminant analysis (supervised multivariate statistical tool) has to be employed in future studies to find the most influential parameter and could be used to potent chemical markers to distinguish fresh and stored honey because this analysis is incorporated with S-plot, variable importance of projection, and one-way ANOVA, which can produce the most accurate and precise results rather solely depending on one-way ANOVA.
  3. Manickavasagam G, Saaid M, Lim V
    J Food Sci, 2024 Feb;89(2):1058-1072.
    PMID: 38221804 DOI: 10.1111/1750-3841.16903
    Volatile organic compounds in honey are known for their considerable impact on the organoleptic properties of honey, such as aroma, flavor, taste, and texture. The type and composition of volatile organic compounds are influenced by entomological, geographical, and botanical origins; thus, these compounds have the potential to be chemical markers. Sixty-two volatile compounds were identified using gas chromatography-mass spectrometry from 30 Heterotrigona itama (H. itama) honey samples from 3 different geographical origins. Hydrocarbons and benzene derivatives were the dominant classes of volatile organic compounds in the samples. Both clustering and discriminant analyses demonstrated a clear separation between samples from distant origins (Kedah and Perak), and the volcano plot supported it. The reliability and predictability of the partial least squares-discriminant analysis model from the discriminant analysis were validated using cross-validation (R2 : 0.93; Q2 : 0.83; accuracy: 0.97) and the permutation test (p  1.0) and the Kruskal-Wallis test (p 
  4. Maizura M, Fazilah A, Norziah MH, Karim AA
    J Food Sci, 2007 Aug;72(6):C324-30.
    PMID: 17995673
    Edible films were prepared from a mixture of partially hydrolyzed sago starch and alginate (SA). Lemongrass oil (0.1% to 0.4%, v/w) and glycerol (0% and 20%, w/w) were incorporated in the films to act as natural antimicrobial agent and plasticizer, respectively. The films were characterized for antimicrobial activity, water vapor permeability (WVP), tensile strength (TS), percent elongation at break (%E), and water solubility (WS). Fourier transform infrared (FTIR) spectroscopy was conducted to determine functional group interactions between the matrix and lemongrass oil. The zone of inhibition was increased significantly (P < 0.05) by addition of lemongrass oil at all levels in the presence and the absence of glycerol. This indicates that the film containing lemongrass oil was effective against Escherichia coli O157:H7 at all levels. In the absence of glycerol, the tensile strength of film decreased as the oil content increased, but there was no significant (P > 0.05) difference in percent elongation. The percent elongation at break and WVP values for film with 20% glycerol was found to be increased significantly (P < 0.05) with an increase in lemongrass oil content. Addition of lemongrass oil did not have any interaction with the functional groups of films as measured by FTIR.
  5. Lioe HN, Selamat J, Yasuda M
    J Food Sci, 2010 Apr;75(3):R71-6.
    PMID: 20492309 DOI: 10.1111/j.1750-3841.2010.01529.x
    Soy sauce taste has become a focus of umami taste research. Umami taste is a 5th basic taste, which is associated to a palatable and pleasurable taste of food. Soy sauce has been used as an umami seasoning since the ancient time in Asia. The complex fermentation process occurred to soy beans, as the raw material in the soy sauce production, gives a distinct delicious taste. The recent investigation on Japanese and Indonesian soy sauces revealed that this taste is primarily due to umami components which have molecular weights lower than 500 Da. Free amino acids are the low molecular compounds that have an important role to the taste, in the presence of sodium salt. The intense umami taste found in the soy sauces may also be a result from the interaction between umami components and other tastants. Small peptides are also present, but have very low, almost undetected umami taste intensities investigated in their fractions.
  6. Lim SY, Tham PY, Lim HYL, Heng WS, Chang YP
    J Food Sci, 2018 Jun;83(6):1522-1532.
    PMID: 29745989 DOI: 10.1111/1750-3841.14155
    The valorization of guava waste requires compositional and functional studies. We tested three byproducts of guava purée processing, namely refiner, siever, and decanter. We analyzed the chemical composition and quantified the prebiotic activity score and selected carbohydrates; we also determined the water holding (WHC), oil holding (OHC), cation exchange capacities, bile acid binding, and glucose dialysis retardation (GDR) of the solid fraction and the antioxidative and α-amylase inhibitory capacities (AIC) of the ethanolic extract. Refiner contained 7.7% lipid, 7.08% protein and a relatively high phytate content; it had a high prebiotic activity score and possessed the highest binding capacity with deoxycholic acid. Siever contained high levels of low molecular weight carbohydrates and total tannin but relatively low crude fiber and cellulose contents. It had the highest binding with chenodeoxycholic acid (74.8%), and exhibited the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. Decanter was rich in cellulose and had a high prebiotic activity score. The WHC and OHC values of decanter were within a narrow range and also exhibited the highest binding with cholic acid (86.6%), and the highest values of GDR and AIC. The refiner waste could be included in animal feed but requires further processing to reduce the high phytate levels. All three guava byproducts had the potential to be a source of antioxidant dietary fiber (DF), a finding that warrants further in vivo study.

    PRACTICAL APPLICATION: To differing extents, the guava byproducts exhibited useful physicochemical binding properties and so possessed the potential for health-promoting activity. These byproducts could also be upgraded to other marketable products so the manufacturers of processed guava might be able to develop their businesses sustainably by making better use of them.

  7. Lim PK, Jinap S, Sanny M, Tan CP, Khatib A
    J Food Sci, 2014 Jan;79(1):T115-21.
    PMID: 24344977 DOI: 10.1111/1750-3841.12250
    The objective of this study was to evaluate the precursors of acrylamide formation in sweet potato (SP) (Ipomoea batatas L. Lam) chips and to determine the effect of different types of vegetable oils (VOs), that is, palm olein, coconut oil, canola oil, and soya bean oil, on acrylamide formation. The reducing sugars and amino acids in the SP slices were analyzed, and the acrylamide concentrations of SP chips were measured. SP chips that were fried in a lower degree of unsaturation oils contained a lower acrylamide concentration (1443 μg/kg), whereas those fried with higher degree of unsaturated oils contained a higher acrylamide concentration (2019 μg/kg). SP roots were found to contain acrylamide precursors, that is, 4.17 mg/g glucose and 5.05 mg/g fructose, and 1.63 mg/g free asparagine. The type of VO and condition used for frying, significantly influenced acrylamide formation. This study clearly indicates that the contribution of lipids in the formation of acrylamide should not be neglected.
  8. Leong MH, Tan CP, Nyam KL
    J Food Sci, 2016 Oct;81(10):C2367-C2372.
    PMID: 27635525 DOI: 10.1111/1750-3841.13442
    The objective of this research was to study the oxidative stability and antioxidant properties of microencapsulated kenaf (Hibiscus cannabinus L.) seed oil (MKSO) produced by co-extrusion technology upon accelerated storage. The combination of sodium alginate, high methoxyl pectin, and chitosan were used as shell materials. The oxidative stability of the kenaf seed oil was determined by iodine value, peroxide value, p-Anisidine value, total oxidation (TOTOX), thiobarbituric acid reactive substances assay, and free fatty acid content. Total phenolic content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) cation radical-scavenging assay and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay were used to examine the antioxidant properties of oils. Oxidative stability tests showed that bulk kenaf seed oil (BKSO) was oxidized significantly higher (P < 0.05) than MKSO. The total increment of TOTOX value of BKSO was 165.93% significantly higher (P < 0.05) than MKSO. Co-extrusion technology has shown to be able to protect kenaf seed oil against lipid oxidation and delay the degradation of natural antioxidants that present in oil during storage.
  9. Lee YY, Tang TK, Lai OM
    J Food Sci, 2012 Aug;77(8):R137-44.
    PMID: 22748075 DOI: 10.1111/j.1750-3841.2012.02793.x
    Medium- and long-chain triacylglycerol (MLCT) is a modified lipid containing medium- chain (C6-C12) and long-chain fatty acids (C14-C24) in the same triacylglycerol (TAG) molecule. It can be produced either through enzymatic (with 1,3 specific or nonspecific enzyme) or chemical methods. The specialty of this structured lipid is that it is metabolized differently compared to conventional fats and oils, which can lead to a reduction of fat accumulation in the body. Therefore, it can be used for obesity management. It also contains nutritional properties that can be used to treat metabolic problems. This review will discuss on the health benefits of MLCT, its production methods especially via enzymatic processes and its applications in food industries.
  10. Khalil MI, Alam N, Moniruzzaman M, Sulaiman SA, Gan SH
    J Food Sci, 2011 Aug;76(6):C921-8.
    PMID: 22417491 DOI: 10.1111/j.1750-3841.2011.02282.x
    The phenolic acid and flavonoid contents of Malaysian Tualang, Gelam, and Borneo tropical honeys were compared to those of Manuka honey. Ferric reducing/antioxidant power assay (FRAP) and the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical-scavenging activities were also quantified. All honey extracts exhibited high phenolic contents (15.21 ± 0.51- 42.23 ± 0.64 mg/kg), flavonoid contents (11.52 ± 0.27- 25.31 ± 0.37 mg/kg), FRAP values (892.15 ± 4.97- 363.38 ± 10.57 μM Fe[II]/kg), and high IC₅₀ of DPPH radical-scavenging activities (5.24 ± 0.40- 17.51 ± 0.51 mg/mL). Total of 6 phenolic acids (gallic, syringic, benzoic, trans-cinnamic, p-coumaric, and caffeic acids) and 5 flavonoids (catechin, kaempferol, naringenin, luteolin, and apigenin) were identified. Among the Malaysian honey samples, Tualang honey had the highest contents of phenolics, and flavonoids, and DPPH radical-scavenging activities. We conclude that among Malaysian honey samples, Tualang honey is the richest in phenolic acids, and flavonoid compounds, which have strong free radical-scavenging activities.
  11. Karthivashan G, Tangestani Fard M, Arulselvan P, Abas F, Fakurazi S
    J Food Sci, 2013 Sep;78(9):C1368-75.
    PMID: 24024688 DOI: 10.1111/1750-3841.12233
    Free radicals trigger chain reaction and inflict damage to the cells and its components, which in turn ultimately interrupts their biological activities. To prevent free radical damage, together with an endogenous antioxidant system, an exogenous supply of antioxidant components to the body in the form of functional food or nutritional diet helps undeniably. Research conducted by the Natl. Inst. of Health claimed that Moringa oleifera Lam possess the highest antioxidant content among various natural food sources based on an oxygen radical absorbent capacity assay. In this study, a 90% (ethanol:distilled water--90:10) gradient solvent was identified as one of the best gradient solvents for the effectual extraction of bioactive components from M. oleifera leaves. This finding was confirmed by various antioxidant assays, including radical scavenging activity (that is, 1, 1-diphenyl-2-picrylhydrazyl, H(2)O(2), and NO radical scavenging assay) and total antioxidant capacity (that is, ferric reducing antioxidant power and molybdenum assay). High-performance liquid chromatography (HPLC) fingerprints of the 90% gradient extract visually showed few specific peaks, which on further analysis, using HPLC-DAD-ESI-MS, were identified as flavonoids and their derivatives. Despite commonly reported flavonoids, that is, kaempferol and quercetin, we report here for the 1st time the presence of multiflorin-B and apigenin in M. oleifera leaves. These findings might help researchers to further scrutinize this high activity exhibiting gradient extract and its bio-active candidates for fruitful clinical/translational investigations.
  12. Karim NA, Noor AM, Lee YY, Lai OM
    J Food Sci, 2015 Dec;80(12):C2678-85.
    PMID: 26523850 DOI: 10.1111/1750-3841.13119
    The oxidative and thermal stability of low diglycerides palm oil produced via silica treatment (sPO) and enzymatic treatment (ePO) compared with standard quality palm oil (SQ) and premium quality palm oil (PQ) was investigated. Both of the oils displayed better oxidative stability compared with SQ as well as significantly higher (P < 0.05) thermal resistance and oxidative strength than SQ and PQ due to lower amounts of partial glycerides. Although the initial induction periods (IPs) of sPO and ePO were significantly lower compared with SQ and PQ, both the oils showed slower drops in their IP values. The darkening effect after frying was significantly (P < 0.05) slower in sPO compared with SQ, PQ, and ePO. Besides, there is no difference p > 0.05 in the rate of FFA formation between sPO and PQ. The anisidine value and peroxide values were lowest in sPO, followed by ePO, PQ, and SQ.
  13. Karim AA, Toon LC, Lee VP, Ong WY, Fazilah A, Noda T
    J Food Sci, 2007 Mar;72(2):C132-8.
    PMID: 17995828
    Effects of phosphorus content (510 to 987 ppm) on the gelatinization and retrogradation of 6 potato cultivars (Benimaru, Hokkaikogane, Irish Cobbler, Konafubuki, Sakurafubuki, and Touya) were studied. Pasting properties were analyzed by RVA, thermal properties by DSC, and mechanical properties of the starch gels by TA. Phosphorus was positively correlated with swelling power (r= 0.84) and negatively correlated with solubility (r= 0.83). Phosphorus content showed significant effect on certain pasting properties of potato starch such as peak viscosity, breakdown, and setback. Phosphorus content showed a significant positive correlation with peak viscosity (r= 0.95) and breakdown (r= 0.90). Increasing concentration of phosphorus tends to decrease the setback. Phosphorus content had no influence on thermal properties and mechanical properties of potato starch gel.
  14. Jinap S, Ikrawan Y, Bakar J, Saari N, Lioe HN
    J Food Sci, 2008 Sep;73(7):H141-7.
    PMID: 18803708 DOI: 10.1111/j.1750-3841.2008.00858.x
    Cocoa-specific aroma precursors and methylpyrazines in underfermented cocoa beans obtained from fermentation induced by indigenous carboxypeptidase have been investigated. Fermentation conditions and cocoa bean components were analyzed during 0 to 3 d of fermentation. Underfermented cocoa beans were characterized as having hydrophilic peptides and free hydrophobic amino acids much higher than unfermented ones. These 2 key components of cocoa aroma precursors may be produced from the breakdown of proteins and polypeptides by endogenous carboxypeptidase during the fermentation process. The enzyme was activated during fermentation. Polypeptides of 47, 31, and 19 kDa were observed in the samples throughout the 3-d fermentation period; however, only the first 2 polypeptides were remarkably reduced during fermentation. Since the 1st day of fermentation, underfermented cocoa beans contained methylpyrazines, a dominant group of cocoa-specific aroma. This might be due to microbial activities during fermentation, observed through a decrease of pH value and an increase of temperature of cocoa beans. The concentration of tetramethylpyrazines was significantly increased during the 3 d of fermentation. This may increase the cocoa-specific flavor to the beans.
  15. Javadi N, Abas F, Abd Hamid A, Simoh S, Shaari K, Ismail IS, et al.
    J Food Sci, 2014 Jun;79(6):C1130-6.
    PMID: 24888400 DOI: 10.1111/1750-3841.12491
    Cosmos caudatus, which is known as "Ulam Raja," is an herbal plant used in Malaysia to enhance vitality. This study focused on the evaluation of the α-glucosidase inhibitory activity of different ethanolic extracts of C. caudatus. Six series of samples extracted with water, 20%, 40%, 60%, 80%, and 100% ethanol (EtOH) were employed. Gas chromatography-mass spectrometry (GC-MS) and orthogonal partial least-squares (OPLS) analysis was used to correlate bioactivity of different extracts to different metabolite profiles of C. caudatus. The obtained OPLS scores indicated a distinct and remarkable separation into 6 clusters, which were indicative of the 6 different ethanol concentrations. GC-MS can be integrated with multivariate data analysis to identify compounds that inhibit α-glucosidase activity. In addition, catechin, α-linolenic acid, α-D-glucopyranoside, and vitamin E compounds were identified and indicate the potential α-glucosidase inhibitory activity of this herb.
  16. Ibrahim NUA, Abd Aziz S, Hashim N, Jamaludin D, Khaled AY
    J Food Sci, 2019 Apr;84(4):792-797.
    PMID: 30861127 DOI: 10.1111/1750-3841.14436
    Total polar compounds (TPC) and free fatty acids (FFA) are important indicators in evaluating the quality of frying oil. Conventional methods to determine TPC and FFA are often time consuming, involved laboratory analyses which required skilled personnel and used substantial amount of harmful solvent. In this study, dielectric spectroscopy technique was used to investigate the relation between dielectric property of refined, bleached and deodorized palm olein (RBDPO) during deep frying with TPC and FFA. In total, 150 batches of French fries were intermittently fried at 185 ± 5 °C for 7 hr a day over 5 consecutive days. A total of 30 frying oil samples were collected. The dielectric property of frying oil samples were measured using impedance analyzer with frequencies ranging from 100 Hz to 10 MHz. The TPC of frying oil samples were measured with a Testo 270, while the FFA analysis was done using Malaysian Palm Oil Board (MPOB) test method. Results showed that dielectric constant, TPC and FFA of RBDPO increased as the frying time increased. Dielectric constant increased from 3.09 to 3.17, while TPC and FFA increased from 9.96 to 19.52 and from 0.08% to 0.36%, respectively. Partial least square (PLS) analysis produced good prediction of TPC and FFA with the application of genetic algorithm (GA). Model developed for prediction of TPC and FFA yielded highly significant correlation with R2 of 0.91 and 0.95, respectively and both had root mean square error in cross-validation (RMSECV) of 1.06%. This study demonstrates the potential of dielectric spectroscopy in monitoring palm olein degradation during frying. PRACTICAL APPLICATION: The application of dielectric spectroscopy to detect degradation of palm olein during frying was studied. The dielectric property of palm olein during frying has successfully correlated with TPC and FFA. The model developed in this study could be used for the development of a sensing system for palm olein degradation monitoring.
  17. Huynh HL, Danhi R, Yan SW
    J Food Sci, 2016 Jan;81(1):S150-5.
    PMID: 26613570 DOI: 10.1111/1750-3841.13171
    Historically, fish sauce has been a standard condiment and ingredient in various Southeast Asian cuisines. Moreover, fish sauce imparts umami taste, which may enhance perceived saltiness in food. This quality suggests that fish sauce may be used as a partial substitute for sodium chloride (NaCl) in food preparation, which may present a valuable option for health-conscious and salt-restricted consumers. However, the degree to which NaCl can be decreased in food products without compromising taste and consumer acceptance has not been determined. We hypothesized that NaCl content in food may be reduced by partial replacement with fish sauce without diminishing palatability and consumer acceptance. Preparations of 3 types of food were assessed to test this hypothesis: chicken broth (n = 72); tomato sauce (n = 73); and coconut curry (n = 70). In the first session, the percentage of NaCl that could be replaced with fish sauce without a significant change in overall taste intensity was determined for each type of food using the 2-Alternative Forced Choice method. In the second session, subjects rated 5 samples for each food with varying NaCl and/or fish sauce content on 3 sensory attributes: deliciousness; taste intensity; and saltiness. Our results demonstrate that NaCl reduction was possible in chicken broth, tomato sauce, and coconut curry at 25%, 16%, and 10%, respectively, without a significant loss (P < 0.05) in deliciousness and overall taste intensity. These results suggest that it is possible to replace NaCl in foods with fish sauce without reducing overall taste intensity and consumer acceptance.
  18. Hussin M, Hamid AA, Mohamad S, Saari N, Bakar F, Dek SP
    J Food Sci, 2009 Mar;74(2):H72-8.
    PMID: 19323754 DOI: 10.1111/j.1750-3841.2009.01045.x
    A study was carried out to investigate the effects of Centella asiatica leaf on lipid metabolism of oxidative stress rats. The rats were fed 0.1% hydrogen peroxide (H(2)O(2)) with either 0.3% (w/w) C. asiatica extract, 5%C. asiatica powder (w/w), or 0.3% (w/w) alpha-tocopherol for 25 wk. Results of the study showed that C. asiatica powder significantly (P < 0.05) lowered serum low-density lipoprotein compared to that of control rats (rats fed H(2)O(2) only). At the end of the study C. asiatica-fed rats were also found to have significantly (P < 0.05) higher high-density lipoprotein and lower triglyceride level compared to rats fed only normal diet. However, cholesterol level of rats fed both C. asiatica extract and powder was found to be significantly (P < 0.05) higher compared to that of control rats. It was interesting to note that consumption of C. asiatica significantly decreased body and liver weights of the rats. Histological examinations revealed no obvious changes in all rats studied. Quantitative analysis of C. asiatica leaf revealed high concentration of total phenolic compounds, in particular, catechin, quercetin, and rutin.
  19. Huey SM, Hock CC, Lin SW
    J Food Sci, 2009 May-Jul;74(4):E177-83.
    PMID: 19490322 DOI: 10.1111/j.1750-3841.2009.01122.x
    The lipase-catalyzed interesterification of refined, bleached, deodorized palm olein with iodine value (IV) of 62 was studied in a pilot continuous packed-bed reactor operating at 65 degrees C. Sn-1,3 specific immobilized enzyme; Lipozyme TL IM (Thermomyces Lanuginosa) from Novozyme A/S was used in this study. The interesterification reaction produced fully solidified fats at ambient temperature due to the production of trisaturated triacylglycerols (TAG) (PPP and PPS, where P = palmitic acid, S = stearic acid). The reaction also increased the percentage of triunsaturated TAG (OLL, OLO, and OOO, where O = oleic acid, L = linoleic acid). The interesterified product was then dry fractionated at temperatures of 9, 12, 15, 18, and 21 degrees C to separate the saturated fats from the unsaturated. The results show that IV of olein increased when the fractionation temperature (T(FN)) decreased. The highest IV of olein was 72, obtained from T(FN) at 9 degrees C. After interesterification and laboratory-scale fractionation, the olein fractions contained higher unsaturation content ranging from 64.7% to 67.7% compared to the starting material (58.3%), while the saturation content was reduced from 41.7% to the range of 32.3% to 35.3%. The yields of these oleins were low with the range of 24.8% to 51.8% due to the limitation of the vacuum filtration. Ten kilograms of pilot-scale fractionation with membrane press filter was used to determine the exact olein yield. At T(FN) of 12 degrees C, 67.1% of olein with saturation content of 33.9% was obtained.
  20. Hassan N, Ahmad T, Zain NM
    J Food Sci, 2018 Dec;83(12):2903-2911.
    PMID: 30440088 DOI: 10.1111/1750-3841.14370
    The issue of food authenticity has become a concern among religious adherents, particularly Muslims, due to the possible presence of nonhalal ingredients in foods as well as other commercial products. One of the nonhalal ingredients that commonly found in food and pharmaceutical products is gelatin which extracted from porcine source. Bovine and fish gelatin are also becoming the main commercial sources of gelatin. However, unclear information and labeling regarding the actual sources of gelatin in food and pharmaceutical products have become the main concern in halal authenticity issue since porcine consumption is prohibited for Muslims. Hence, numerous analytical methods involving chemical and chemometric analysis have been developed to identify the sources of gelatin. Chemical analysis techniques such as biochemical, chromatography, electrophoretic, and spectroscopic are usually combined with chemometric and mathematical methods such as principal component analysis, cluster, discriminant, and Fourier transform analysis for the gelatin classification. A sample result from Fourier transform infrared spectroscopy analysis, which combines Fourier transform and spectroscopic technique, is included in this paper. This paper presents an overview of chemical and chemometric methods involved in identification of different types of gelatin, which is important for halal authentication purposes.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links