Nine species of parasitoids were found parasitizing the pupae of filth flies breeding in refuse dumps and poultry farms throughout peninsular Malaysia. Spalangia were most common, consisting of Spalangia endius Walker, S. cameroni Perkins, S. gemina Boucek, S. nigroaenea Curtis, and two undescribed species. Other parasitoids collected were Pachycrepoideus vindemmiae Rondani, Dirhinus himalayanus Westwood, and an unidentified Hymenoptera. The parasitized fly hosts included Musca domestica L., Chrysomya megacephala (F.), Fannia sp., and Ophyra sp. S. endius was the most common parasitoid attacking M. domestica and C. megacephala at refuse dumps and poultry farms D. himalayanus were found to parasitize only M. domestica pupae collected at poultry farms.
During the intermonsoon period from mid-September to mid-October 1986, wild-caught Anopheles balabacensis Baisas females were marked and released in a host-choice experiment. Association between capture and recapture of marked mosquitoes from human and bovid hosts and blood meal host identification of recaptured females were determined on a daily basis. Although the mark-recapture and blood meal data indicated behavioral heterogeneity between buffalo and human biters, restriction endonuclease fragment length polymorphism analysis revealed no differences in repeat sequence profiles. Doubly-marked recaptures strongly indicated a "learning" component involved in a separate host preference experiment. In a "habitat loyalty" experiment conducted in January 1987, females of An. balabacensis preferentially returned to the resting sites (indoor surfaces and exit traps) where they were first caught. Of nine isozyme loci found to be polymorphic, the genotypic frequencies of Esterase-3 and Isocitrate dehydrogenase-3 were different in "faithfully" endophilic and exophilic subpopulations. Genetic heterozygosity, as determined by polyacrylamide gel electrophoresis, was greater in exophilic than endophilic population components. These results confirm that genetic and learning components can significantly influence house resting and host seeking behavior and may contribute to local epidemiological patterns of malaria transmission observed in Sabah, Malaysia.
Toxicities of three pyrethroids, d-phenothrin, decamethrin, and permethrin, were evaluated in the laboratory against Leptotrombidium fletcheri (Womersley & Heaslip). The susceptibilities between populations of the species infected and noninfected with scrub typhus were investigated. The three pesticides exhibited different toxicities to the chiggers. D- phenothrin was the most toxic, followed by decamethrin, then permethrin. There were no significant differences between susceptibilities of the infected and noninfected populations. Log-probit regression lines indicated that the species was most sensitive to increasing concentrations of d-phenothrin and least sensitive to permethrin. The results show that the three pesticides are potential candidates for chemical control of L. fletcheri. It may be possible in the future to conduct similar bioassays only with the noninfected population, thus reducing risk of infection to workers conducting the bioassays. Similarly, there may not be a need to separate field-collected chiggers into the two populations before performing the bioassays.
A study on population patterns of the parasitoid Spalangia endius Walker at a dumping ground near Kuala Lumpur city showed that the percentage of S. endius adult emergence varied seasonally. During the relatively heavy rainfall months of August and November 1988, and January, March, and April 1989, the population of S. endius adult emergence were low (0-14.2%) compared to the less rainy months of July, September, and December 1988, and May 1989 (29.3-39.6%). This information could be useful in formulating strategies to reduce house fly population at the refuse dumping ground through integrated pest management programs.
Canine babesiosis is an emerging tick-borne disease with a worldwide distribution, including Malaysia. While the prevalence of Babesia has been documented from dogs in Malaysia, occurrence of Babesia has been relatively little studied in their tick vectors. Accordingly, a total of 240 dogs and 140 Rhipicephalus sanguineus sensu lato (s.l.) (Acari: Ixodidae) ticks from Malaysia were molecularly screened for the presence of Babesia protozoa in the present study. Babesia gibsoni was only detected in ticks (1.4%), whereas Babesia vogeli was detected in both ticks (1.4%) and dogs (2.1%). This study highlights the detection of B. gibsoni and B. vogeli for the first time, in both adult and nymphal stages of R. sanguineus s.l. in Malaysia, suggesting the potential role of this tick species in transmitting canine babesiosis.
Simulium (Gomphostilbia) yvonneae sp. nov. is described based on adults, pupae, and mature larvae from Vietnam. This new species belongs to the Simulium duolongum subgroup in the S. batoense species-group of the subgenus Gomphostilbia Enderlein. It is distinguished by having a relatively larger number of male upper-eye facets in 16 vertical columns and 16 horizontal rows and a pupal gill with eight filaments arranged as 3+(1+2)+2 from dorsal to ventral, of which two filaments of the ventral pair are 1.8 times as long as the longest filament of the middle and dorsal triplets. Morphological comparisons are made to distinguish this new species from all 22 related species. The genetic distinctiveness of this new species in the S. duolongum subgroup is also presented based on the DNA barcoding COI gene.
Resistance status of Aedes albopictus (Diptera: Culicidae) collected from Sabah, East Malaysia, was evaluated against four major classes of adulticides, namely pyrethroid, carbamate, organochlorine, and organophosphate. Adult bioassays conforming to WHO standard protocols were conducted to assess knockdown and mortality rates of Ae. albopictus. Among tested pyrethroid adulticides, only cyfluthrin, lambda-cyaholthrin, and deltamethrin were able to inflict total knockdown. The other adulticide classes mostly failed to cause any knockdown; the highest knockdown rate was only 18.33% for propoxur. With regards to mortality rate, Ae. albopictus was unanimously susceptible toward all pyrethroids, dieldrin, and malathion, but exhibited resistance toward bendiocarb, propoxur, dichlorodiphenyltrichloroethane, and fenitrothion. Additionally, correlation analysis demonstrated cross-resistance between bendiocarb and propoxur, and malathion and propoxur. In conclusion, this study has disclosed that pyrethroids are still generally effective for Aedes control in Sabah, Malaysia. The susceptibility status of Ae. albopictus against pyrethroids in descending order was cyfluthrin > lambda-cyhalothrin > deltamethrin > etofenprox > permethrin.
Mite biodiversity and distribution in Malaysia is currently understudied. Most previous works on Malaysian Acari have focused on pest organisms of medical, veterinary, and agricultural concern, with a few recent studies centered on mites in forensic contexts. Previous literatures have targeted collection sites in forest reserves and/or mountains in either Peninsular or Malaysian Borneo, though the state of Sarawak had the least publications related to mite species descriptions despite having the highest number of nature parks of any state in the country. Most publications focused on the three states Selangor, Pahang and Sabah. Most of the mite species reported were from mammals (66.3%), with fewer species from birds (21.7%), arthropods (11.2%), and reptiles (0.8%). We believe that further work on the systematic documentation of mite species throughout Malaysia is necessary as it could generate useful tools, such as the use of mites as biogeographical markers or as forensic indicators. Therefore, this review catalogs mite species that have been documented in or on animal hosts in Malaysia and serves as a foundation for future work.
Previous studies suggested the presence of species complex in the so-called Simulium asakoae Takaoka & Davies (Diptera: Simuliidae) in Thailand due to its high morphological variability and genetic divergence. To investigate whether the true S. asakoae is present in Thailand, we performed a detailed morphological identification of S. asakoae and compared its DNA barcodes with the morphospecies S. asakoae from Myanmar and the typical S. asakoae from Malaysia. Phylogenetic analysis revealed the Thai materials analyzed in this study were indeed genetically similar with those from Myanmar and Malaysia, though genetic distances 0-2.27% were observed. We tentatively regard this divergence as intraspecific variation, and the automatic barcode gap discovery analysis further supports them as a single species.
Aedes-borne virus disease control relies on insecticides to interrupt transmission. Temephos remains a key chemical for control of immature stage Aedes in Thailand and much of Southeast Asia. However, repeated use of insecticides may result in selection for resistance in vector populations, thus compromising operational intervention. Herein, the phenotypic response to temephos by Aedes aegypti (L.) and Aedes albopictus (Skuse) collected in Thailand and surrounding countries is presented. Data from 345 collection sites are included: 283 from literature review (244 sites with Ae. aegypti, 21 with Ae. albopictus, and 18 having both species sampled), plus 62 locations with Ae. aegypti in Thailand conducted between 2014 and 2018. Susceptibility assays followed WHO guidelines using the recommended discriminating dose of temephos (0.012 mg/liter) against late third to early fourth instar Ae. aegypti. Findings revealed 34 locations with susceptible Ae. aegypti, 13 with suspected resistance, and 15 indicating resistance. Published data between 1999 and 2019 in Thailand found Ae. aegypti resistant in 73 of 206 collection sites, whereas 3 locations from 11 sampled with low-level resistant in Ae. albopictus. From surrounding countries conducting temephos assays (Cambodia, Lao PDR, Myanmar, Malaysia, and Singapore), resistance is present in Ae. aegypti and Ae. albopictus from 27 of 56 and 19 of 28 locations, respectively. Routine insecticide susceptibility monitoring should be an operational requirement in vector control programs. Given the wide distribution and apparent increase in temephos-resistance, alternative larvicidal compounds must be considered if chemical control is to remain a viable vector control strategy.
Pediculosis capitis caused by Pediculus humanus capitis (De Geer) is endemic all over the world, and children are mostly affected, particularly those living in overcrowded institutions. Several studies have shown that P. h. capitis carried human pathogenic bacteria, suggesting the potential role of head lice in the transmission of pathogens to humans. In this study, we determined the genetic diversity of head lice collected from welfare homes sheltering underprivileged children by using DNA barcoding and demonstrated the presence of Acinetobacter spp., Serratia marcescens, and Staphylococcus aureus in head lice, which have never been investigated before in Malaysia. Cox1 DNA barcoding identified the head lice, P. h. capitis collected from welfare homes across two geographical areas of Peninsular Malaysia as belonging to clades A, B, and D. Acinetobacter bacteria: Acinetobacter guillouiae, Acinetobacter junii, Acinetobacter baumannii, and Acinetobacter nosocomialis were detected in head lice belonging to clades A and also D. In addition, DNA from S. marcescens and S. aureus were also detected in both clades A and D. To our knowledge, this is the first report on the genetic diversity of head lice in Malaysia through DNA barcoding, as well as the first to provide molecular evidence on the type of bacteria occurring in head lice in Malaysia. It is anticipated that the DNA barcoding technique used in this study will be able to provide rapid and accurate identification of arthropods, in particular, medically important ectoparasites.