Displaying publications 41 - 42 of 42 in total

Abstract:
Sort:
  1. Roslan A, Said DS, Sulaiman N, Mohd Ghani KA, Nurdin A
    J Pharm Biomed Anal, 2023 Nov 30;236:115729.
    PMID: 37778199 DOI: 10.1016/j.jpba.2023.115729
    Studies reveal that alterations in membrane protein (MP) patterns are associated with underlying drug resistance to chemotherapy. Therefore, the tryptic-digested MPs from the bladder cancer cell line were subjected to global proteomics using LC-MS/MS to identify the highly expressed potential MPs in bladder cancer cells. Our findings revealed the identification of MP biomarkers, CD147, and caveolin-1. Immunocytochemistry analysis confirmed the presence of CD147 on the cell membrane, while caveolin-1 showed positive signals without apparent staining on the membrane, suggesting its existence in multiple locations. Western blot analysis confirmed the higher expression of CD147 in non-invasive (RT 112) and metastatic (UM-UC-13) bladder cancer cells compared to invasive bladder cancer cells (5637 and J82), suggesting its potential as an MP biomarker for both of the former subtypes. The identified MPs could be used as drug therapy targets aimed at improving drug sensitivity and enhancing treatment outcomes in bladder cancer patients. SIGNIFICANCE: Identification of the membrane proteins associated with bladder cancer recurrence is crucial to understanding the mechanisms underlying the drug resistance to chemotherapy.
  2. Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Morton DW
    J Pharm Biomed Anal, 2024 Feb 15;239:115912.
    PMID: 38128161 DOI: 10.1016/j.jpba.2023.115912
    Olive trees are one of the most widely cultivated fruit trees in the world. The chemical compositions and biological activities of olive tree fruit and leaves have been extensively researched for their nutritional and health-promoting properties. In contrast, limited data have been reported on olive flowers. The present study aimed to analyse bioactive compounds in olive flower extracts and the effect of fermentation-assisted extraction on phenolic content and antioxidant activity. High-performance thin-layer chromatography (HPTLC) hyphenated with the bioassay-guided detection and spectroscopic identification of bioactive compounds was used for the analysis. Enzymatic and bacterial in situ bioassays were used to detect COX-1 enzyme inhibition and antibacterial activity. Multiple zones of antibacterial activity and one zone of COX-1 inhibition were detected in both, non-fermented and fermented, extracts. A newly developed HPTLC-based experimental protocol was used to measure the high-maximal inhibitory concentrations (IC50) for the assessment of the relative potency of the extracts in inhibiting COX-1 enzyme and antibacterial activity. Strong antibacterial activities detected in zones 4 and 7 were significantly higher in comparison to ampicillin, as confirmed by low IC50 values (IC50 = 57-58 µg in zone 4 and IC50 = 157-167 µg in zone 7) compared to the ampicillin IC50 value (IC50 = 495 µg). The COX-1 inhibition by the extract (IC50 = 76-98 µg) was also strong compared to that of salicylic acid (IC50 = 557 µg). By comparing the locations of the bands to coeluted standards, compounds from detected bioactive bands were tentatively identified. The eluates from bioactive HPTLC zones were further analysed by FTIR NMR, and LC-MS spectroscopy. Multiple zones of antibacterial activity were associated with the presence of triterpenoid acids, while COX-1 inhibition was related to the presence of long-chain fatty acids.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links