Displaying publications 41 - 49 of 49 in total

Abstract:
Sort:
  1. Salikin NH, Nappi J, Majzoub ME, Egan S
    Microorganisms, 2020 Dec 11;8(12).
    PMID: 33322253 DOI: 10.3390/microorganisms8121963
    Parasitic nematode infections cause debilitating diseases and impede economic productivity. Antinematode chemotherapies are fundamental to modern medicine and are also important for industries including agriculture, aquaculture and animal health. However, the lack of suitable treatments for some diseases and the rise of nematode resistance to many available therapies necessitates the discovery and development of new drugs. Here, marine epiphytic bacteria represent a promising repository of newly discovered antinematode compounds. Epiphytic bacteria are ubiquitous on marine surfaces where they are under constant pressure of grazing by bacterivorous predators (e.g., protozoans and nematodes). Studies have shown that these bacteria have developed defense strategies to prevent grazers by producing toxic bioactive compounds. Although several active metabolites against nematodes have been identified from marine bacteria, drug discovery from marine microorganisms remains underexplored. In this review, we aim to provide further insight into the need and potential for marine epiphytic bacteria to become a new source of antinematode drugs. We discuss current and emerging strategies, including culture-independent high throughput screening and the utilization of Caenorhabditis elegans as a model target organism, which will be required to advance antinematode drug discovery and development from marine microbial sources.
  2. Liew KJ, Bruce NC, Sani RK, Chong CS, Yaakop AS, Shamsir MS, et al.
    Microorganisms, 2020 Jun 29;8(7).
    PMID: 32610703 DOI: 10.3390/microorganisms8070976
    The majority of the members in order Rhodothermales are underexplored prokaryotic extremophiles. Roseithermus, a new genus within Rhodothermales, was first described in 2019. Roseithermus sacchariphilus is the only species in this genus. The current report aims to evaluate the transcriptomic responses of R. sacchariphilus strain RA when cultivated on beechwood xylan. Strain RA doubled its growth in Marine Broth (MB) containing xylan compared to Marine Broth (MB) alone. Strain RA harbors 54 potential glycosyl hydrolases (GHs) that are affiliated with 30 families, including cellulases (families GH 3, 5, 9, and 44) and hemicellulases (GH 2, 10, 16, 29, 31,43, 51, 53, 67, 78, 92, 106, 113, 130, and 154). The majority of these GHs were upregulated when the cells were grown in MB containing xylan medium and enzymatic activities for xylanase, endoglucanase, β-xylosidase, and β-glucosidase were elevated. Interestingly, with the introduction of xylan, five out of six cellulolytic genes were upregulated. Furthermore, approximately 1122 genes equivalent to one-third of the total genes for strain RA were upregulated. These upregulated genes were mostly involved in transportation, chemotaxis, and membrane components synthesis.
  3. Sivanandy P, Ng Yujie J, Chandirasekaran K, Hong Seng O, Azhari Wasi NA
    Microorganisms, 2023 May 31;11(6).
    PMID: 37374953 DOI: 10.3390/microorganisms11061451
    The human immunodeficiency virus (HIV) is a type of virus that targets the body's immune cells. HIV infection can be divided into three phases: acute HIV infection, chronic HIV infection, and acquired immunodeficiency syndrome (AIDS). HIV-infected people are immunosuppressed and at risk of developing opportunistic infections such as pneumonia, tuberculosis, candidiasis, toxoplasmosis, and Salmonella infection. The two types of HIV are known as HIV-1 and HIV-2. HIV-1 is the predominant and more common cause of AIDS worldwide, with an estimated 38 million people living with HIV-1 while an estimated 1 to 2 million people live with HIV-2. No effective cures are currently available for HIV infection. Current treatments emphasise the drug's safety and tolerability, as lifelong management is needed to manage HIV infection. The goal of this review is to study the efficacy and safety of newly approved drugs from 2018 to 2022 for the treatment of HIV by the United States Food and Drug Administration (US-FDA). The drugs included Cabotegravir and Rilpivirine, Fostemsavir, Doravirine, and Ibalizumab. From the review, switching to doravirine/lamivudine/tenofovir disoproxil fumarate (DOR/3TC/TDF) was shown to be noninferior to the continuation of the previous regimen, efavirenz/emtricitabine/tenofovir disoproxil fumarate (EFV/FTC/TDF) in virologically suppressed adults with HIV-1. However, DOR/3TC/TDF had shown a preferable safety profile with lower discontinuations due to adverse events (AEs), lower neuropsychiatric AEs, and a preferable lipid profile. Ibalizumab was also safe, well tolerated, and had been proven effective against multiple drug-resistant strains of viruses.
  4. Midot F, Lau SYL, Wong WC, Tung HJ, Yap ML, Lo ML, et al.
    Microorganisms, 2019 Oct 16;7(10).
    PMID: 31623251 DOI: 10.3390/microorganisms7100464
    Ganoderma boninense causes basal stem rot (BSR) and is responsible for substantial economic losses to Southeast Asia's palm oil industry. Sarawak, a major producer in Malaysia, is also affected by this disease. Emergence of BSR in oil palm planted on peat throughout Sarawak is alarming as the soil type was previously regarded as non-conducive. Phylogenetic analysis indicated a single species, G. boninense as the cause of BSR in Sarawak. Information on evolutionary and demographic history for G. boninense in Sarawak inferred through informative genes is lacking. Hence, a haplotype study on single nucleotide polymorphisms in internal transcribed spacers (SNPs-ITS) of G. boninense was carried out. Sequence variations were analysed for population structure, phylogenetic and phylogeographic relationships. The internal transcribed spacers (ITS) region of 117 isolates from four populations in eight locations across Sarawak coastal areas revealed seven haplotypes. A major haplotype, designated GbHap1 (81.2%), was found throughout all sampling locations. Single nucleotide polymorphisms were observed mainly in the ITS1 region. The genetic structure was not detected, and genetic distance did not correlate with geographical distance. Haplotype network analysis suggested evidence of recent demographic expansion. Low genetic differences among populations also suggested that these isolates belong to a single G. boninense founder population adapting to oil palm as the host.
  5. Goh KM, Shahar S, Chan KG, Chong CS, Amran SI, Sani MH, et al.
    Microorganisms, 2019 Oct 18;7(10).
    PMID: 31635256 DOI: 10.3390/microorganisms7100468
    Thousands of prokaryotic genera have been published, but methodological bias in the study of prokaryotes is noted. Prokaryotes that are relatively easy to isolate have been well-studied from multiple aspects. Massive quantities of experimental findings and knowledge generated from the well-known prokaryotic strains are inundating scientific publications. However, researchers may neglect or pay little attention to the uncommon prokaryotes and hard-to-cultivate microorganisms. In this review, we provide a systematic update on the discovery of underexplored culturable and unculturable prokaryotes and discuss the insights accumulated from various research efforts. Examining these neglected prokaryotes may elucidate their novelties and functions and pave the way for their industrial applications. In addition, we hope that this review will prompt the scientific community to reconsider these untapped pragmatic resources.
  6. Kanapathy S, Obande GA, Chuah C, Shueb RH, Yean CY, Banga Singh KK
    Microorganisms, 2022 Jul 13;10(7).
    PMID: 35889132 DOI: 10.3390/microorganisms10071413
    Acinetobacter baumannii (A. baumannii) are phenotypically indistinguishable from the Acinetobacter calcoaceticus−A. baumannii (ACB) complex members using routine laboratory methods. Early diagnosis plays an important role in controlling A. baumannii infections and this could be assisted by the development of a rapid, yet sensitive diagnostic test. In this study, we developed an enzyme-based electrochemical genosensor for asymmetric PCR (aPCR) amplicon detection of the blaOXA-51-like gene in A. baumannii. A. baumanniiblaOXA-51-like gene PCR primers were designed, having the reverse primer modified at the 5′ end with FAM. A blaOXA-51-like gene sequence-specific biotin labelled capture probe was designed and immobilized using a synthetic oligomer (FAM-labelled) deposited on the working electrode of a streptavidin-modified, screen-printed carbon electrode (SPCE). The zot gene was used as an internal control with biotin and FAM labelled as forward and reverse primers, respectively. The blaOXA-51-like gene was amplified using asymmetric PCR (aPCR) to generate single-stranded amplicons that were detected using the designed SPCE. The amperometric current response was detected with a peroxidase-conjugated, anti-fluorescein antibody. The assay was tested using reference and clinical A. baumannii strains and other nosocomial bacteria. The analytical sensitivity of the assay at the genomic level and bacterial cell level was 0.5 pg/mL (1.443 µA) and 103 CFU/mL, respectively. The assay was 100% specific and sensitive for A. baumannii. Based on accelerated stability performance, the developed genosensor was stable for 1.6 years when stored at 4 °C and up to 28 days at >25 °C. The developed electrochemical genosensor is specific and sensitive and could be useful for rapid, accurate diagnosis of A. baumannii infections even in temperate regions.
  7. Zamakhaev M, Bespyatykh J, Goncharenko A, Shumkov M
    Microorganisms, 2023 Nov 26;11(12).
    PMID: 38138007 DOI: 10.3390/microorganisms11122863
    Toxin-antitoxin (TA) systems are widely present in bacterial genomes. Mycolicibacterium smegmatis, a common model organism for studying Mycobacterium tuberculosis physiology, has eight TA loci, including mazEF and vapBC. This study aims to investigate the physiological significance of these TA systems. Proteomic profiling was conducted on a culture overexpressing the VapC toxin, and the involvement of VapC in M. smegmatis stress responses to heat shock and antibiotic treatment was examined. While deciphering the underlying mechanisms of the altered stress resistance, we assessed the antibiotic susceptibility of vapBC, mazEF, and double vapBC-mazEF deletion mutants. Additionally, the mRNA levels of vapC and mazF were measured following tetracycline supplementation. The results reveal changes in the abundance of metabolic enzymes and stress response proteins associated with VapC overexpression. This activation of the general stress response leads to reduced thermosensitivity in M. smegmatis, but does not affect susceptibility to ciprofloxacin and isoniazid. Under tetracycline treatment, both vapC and mazF expression levels are increased, and the fate of the cell depends on the interaction between the corresponding TA systems.
  8. Naveed M, Jabeen K, Naz R, Mughal MS, Rabaan AA, Bakhrebah MA, et al.
    Microorganisms, 2022 Aug 10;10(8).
    PMID: 36014038 DOI: 10.3390/microorganisms10081621
    Enterobacter cloacae is mainly responsible for sepsis, urethritis, and respiratory tract infections. These bacteria may affect the transcription of the host and particularly their immune system by producing changes in their epigenetics. In the present study, four proteins of Enterobacter cloacae were used to predict the epitopes for the construction of an mRNA vaccine against Enterobacter cloacae infections. In order to generate cellular and humoral responses, various immunoinformatic-based approaches were used for developing the vaccine. The molecular docking analysis was performed for predicting the interaction among the chosen epitopes and corresponding MHC alleles. The vaccine was developed by combining epitopes (thirty-three total), which include the adjuvant Toll-like receptor-4 (TLR4). The constructed vaccine was analyzed and predicted to cover 99.2% of the global population. Additionally, in silico immunological modeling of the vaccination was also carried out. When it enters the cytoplasm of the human (host), the codon is optimized to generate the translated mRNA efficiently. Moreover, the peptide structures were analyzed and docked with TLR-3 and TLR-4. A dynamic simulation predicted the stability of the binding complex. The assumed construct was considered to be a potential candidate for a vaccine against Enterobacter cloacae infections. Hence, the proposed construct is suitable for in vitro analyses to validate its effectiveness.
  9. Low ZX, Kanauchi O, Tiong V, Sahimin N, Lani R, Tsuji R, et al.
    Microorganisms, 2024 Nov 13;12(11).
    PMID: 39597693 DOI: 10.3390/microorganisms12112304
    The growing risk of contracting viral infections due to high-density populations and ecological disruptions, such as climate change and increased population mobility, has highlighted the necessity for effective antiviral treatment and preventive measures against Dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Recently, there has been increasing attention on the use of probiotics as a potential antiviral option to reduce virus infections. The present study aimed to assess the immunomodulatory effects of heat-killed Lactococcus lactis strain plasma (LC-Plasma) on peripheral blood mononuclear cells (PBMCs) and its subsequent antiviral response against DENV, CHIKV, and ZIKV. To evaluate the immunomodulatory effects of LC-Plasma on PBMCs isolated from healthy individuals, PBMCs were cultured at a density of 2 × 105 cells/well and stimulated with 10 µg/mL of LC-Plasma. LC-plasma-stimulated PBMCs demonstrated elevated interferon-alpha (IFN-α) production and cluster of differentiation 86 (CD86) and human leukocyte antigen-DR isotype (HLA-DR) upregulation, potentially linked to plasmacytoid dendritic cell (pDC) activation. The replication of DENV, CHIKV, and ZIKV was dose-dependently inhibited when Huh-7 cells were stimulated with LC-Plasma-stimulated PBMC supernatant (LCP Sup). IFN-stimulated gene (ISG) expression, including IFN-stimulated gene 15 (ISG15), IFN-stimulated exonuclease gene 20 (ISG20), IFN-induced transmembrane protein 1 (IFITM-1), myxovirus resistance protein A (MxA), and radical S-adenosyl methionine domain-containing protein 2 (RSAD2), was significantly upregulated in LCP Sup-stimulated Huh-7 cells. Findings from this study indicate that LC-Plasma has the potential to induce IFN-α production, leading to an enhancement in the expression of ISGs and contributing to a broad-spectrum antiviral response. Thus, LC-Plasma may serve as a rational adjunctive treatment to ameliorate viral diseases, warranting future clinical trials.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links