Displaying publications 41 - 60 of 90 in total

Abstract:
Sort:
  1. Saleem H, Htar TT, Naidu R, Anwar S, Zengin G, Locatelli M, et al.
    Plants (Basel), 2020 Mar 20;9(3).
    PMID: 32245104 DOI: 10.3390/plants9030388
    The plants of the Bougainvillea genus are widely explored regarding nutritive and medicinal purposes. In this study, dichloromethane (DCM) and methanol (MeOH) extracts of Bougainvillea glabra (Choisy.) aerial and flower parts were analyzed for high-performance liquid chromatography with photodiode array detection (HPLC-PDA), ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) phytochemical composition, and enzyme inhibition potential against key enzymes involved in diabetes (α-amylase), skin problems (tyrosinase), and inflammatory disorders (lipoxygenase (LOX)). HPLC-PDA quantification revealed the identification of nine different polyphenolics, amongst which both flower extracts were richest. The flower MeOH extract contained the highest amount of catechin (6.31 μg/g), gallic acid (2.39 μg/g), and rutin (1.26 μg/g). However, none of the quantified compounds were detected in the aerial DCM extract. UHPLC-MS analysis of DCM extracts revealed the tentative identification of 27 secondary metabolites, where the most common belonged to terpenoid, alkaloid, and phenolic derivatives. Similarly, for enzyme inhibition, all the extracts presented moderate activity against tyrosinase and α-amylases, whereas, for LOX, both methanolic extracts showed higher percentage inhibition compared with DCM extracts. Based on our findings, B. glabra could be regarded as a perspective starting material for designing novel pharmaceuticals.
  2. Al-Shara B, Taha RM, Mohamad J, Elias H, Khan A
    Plants (Basel), 2020 Mar 12;9(3).
    PMID: 32178429 DOI: 10.3390/plants9030360
    A highly efficient protocol for regeneration of Carica papaya L. cv. Eksotika somatic embryos from immature zygotic embryos was developed. This study was designed to overcome the obstacles in regeneration of somatic embryos from immature zygotic embryos of "Eksotika", especially problems associated with formation of better root quality and callus formation at the base of somatic embryos. Somatic embryos were generated by incubation of immature zygotic embryos in half-strength salt Murashige and Skoog (MS) medium with full-strength vitamins supplemented with 7.5 mg L-1 2,4-D, 100 mg L-1 L-glutamine, 50 mg L-1myo-inositol, 45 mg L-1 adenine sulphate, 0.33% gelrite, and 6% sucrose, followed by transfer to maturation medium consisting of ½ MS medium supplemented with 5 mg L-1 phloroglucinol, 100 mg L-1 L-glutamine, 100 mg L-1myo-inositol, 68 mg L-1 adenine sulphate, 0.38% gelrite, and 3% sucrose. After that, well-formed somatic embryos were transferred to MS medium containing 3% sucrose and 0.8% agar for shoot production. The embryos were elongated in MS medium supplemented with 1 mg L-1 gibberellic acid, 0.5 mg L-1 indole-3-butyric acid, 100 mg L-1myo-inositol, and 3.76 mg L-1 riboflavin. Root regeneration was achieved on MS medium containing 7.9 mg L-1 phloroglucinol and supported with vermiculite after 4 days of cultivation on ½ MS medium with 2 mg L-1 indole-3-butyric acid. After the rooting phase, in vitro plantlets were acclimatized in peat moss soil.
  3. Ming NGJ, Binte Mostafiz S, Johon NS, Abdullah Zulkifli NS, Wagiran A
    Plants (Basel), 2019 May 30;8(6).
    PMID: 31151227 DOI: 10.3390/plants8060144
    The development of efficient tissue culture protocol for somatic embryo would facilitate the genetic modification breeding program. The callus induction and regeneration were studied by using different parameters i.e., auxins, cytokinins, and desiccation treatment. Scanning electron microscopy and histological analysis were performed to identify the embryogenic callus for regeneration. The callus percentage results showed that MS (Murashige and Skoog) basal medium supplemented with 3 mg/L 2, 4-D and 30g/L maltose were the optimal callus induction medium for MR220 (80%) and MR220-CL2 (95%). The morphology of the embryogenic callus was confirmed by the SEM (Scanning Electron Microscopy) (presence of extracellular matrix surface network) and later by histological analysis. Finally, MS media supplemented with 0.5 mg/L NAA (Naphthalene Acetic Acid), 2 mg/L kin, and 1 mg/L BAP were selected as the optimum regeneration media treatment while callus desiccated for 48 h was proved to produce more plantlets in MR220 (60%) and MR220-CL2 (73.33%) compared to control treatment (without desiccation). The protocol presented here showed the necessity for the inclusion of partial desiccation as an important step in the tissue culture protocol of Malaysian indica rice genotypes in order to enhance their regeneration potential.
  4. Go WZ, Chin KL, H'ng PS, Wong MY, Luqman CA, Surendran A, et al.
    Plants (Basel), 2021 Oct 07;10(10).
    PMID: 34685932 DOI: 10.3390/plants10102123
    Latex production from Hevea brasiliensis rubber tree is the second most important commodity in Malaysia, but this industry is threatened by the white root rot disease (WRD) caused by Rigidoporus microporus that leads to considerable latex yield loss and tree death. This study aimed to characterize and compare the virulence of five R. microporus isolates obtained from infected rubber trees located at different states in Malaysia. These isolates were subjected to morphological and molecular characterization for species confirmation and pathogenicity test for the determination of virulence level. BLAST search showed that the ITS sequences of all the pathogen isolates were 99% identical to R. microporus isolate SEG (accession number: MG199553) from Malaysia. The pathogenicity test of R. microporus isolates conducted in a nursery with 24 seedlings per isolate showed that isolate RL21 from Sarawak has developed the most severe above- and below-ground symptoms of WRD on the rubber clone RRIM600 as host. Six months after being infected with R. microporus, RL21 was evaluated with the highest average of disease severity index of 80.52% for above- and below-ground symptoms, followed by RL22 (68.65%), RL20 (66.04%), RL26 (54.38%), and RL25 (43.13%). The in vitro growth condition tests showed that isolate RL21 of R. microporus has optimum growth at 25-30 °C, with the preference of weakly acidic to neutral environments (pH 6-7). This study revealed that different virulence levels are possessed among different R. microporus isolates even though they were isolated from the same host species under the same climate region. Taken together, field evaluation through visual observation and laboratory assays have led to screening of the most virulent isolate. Determination of the most virulent isolate in the present study is vital and shall be taken into consideration for the selection of suitable pathogen isolate in the development of more effective control measures in combating tenacious R. microporus.
  5. Hikmawanti NPE, Ramadon D, Jantan I, Mun'im A
    Plants (Basel), 2021 Oct 01;10(10).
    PMID: 34685899 DOI: 10.3390/plants10102091
    Natural products from plants were extracted and widely studied for their activities against many disease conditions. The selection of the extracting solvent is crucial to develop selective and effective methods for the extraction and isolation of target compounds in the plant matrices. Pharmacological properties of plant extracts and their bioactive principles are related to their excellent solubility, stability, and bioavailability when administered by different routes. This review aims to critically analyze natural deep eutectic solvents (NADES) as green solvents in their application to improve the extraction performance of plant metabolites in terms of their extractability besides the stability, bioactivity, solubility, and bioavailability. Herein, the opportunities for NADES to be used in pharmaceutical formulations development including plant metabolites-based nutraceuticals are discussed.
  6. Saad N, Olmstead JW, Jones JB, Varsani A, Harmon PF
    Plants (Basel), 2021 Oct 14;10(10).
    PMID: 34685980 DOI: 10.3390/plants10102172
    Blueberry (Vaccinium spp.) plants are exposed to existing and emerging viruses as a result of expanding acreage of blueberry plantations across the world, primarily in North America. Since blueberry is cultivated in areas where there are wild Vaccinium spp., there is increasing risk of virus movement between wild and cultivated blueberries. This is theoretically possible because viruses can spread from commercial cultivars to native species and vice versa causing the spread of existing and new viruses. The occurrence of these viruses in blueberry can be devastating to the industry considering the cost for cultivation and production of this perennial crop. However, the advent of high-throughput sequencing and bioinformatic sequence analysis have allowed for rapid identification of known and novel viruses in any crop including blueberry, thus facilitating proper intervention in response to serious viral diseases. In this paper, we aim to focus on the current status of known and novel viruses emerging in blueberry worldwide, which may impact the blueberry industry.
  7. Suraya AA, Misran A, Hakiman M
    Plants (Basel), 2021 Oct 09;10(10).
    PMID: 34685949 DOI: 10.3390/plants10102141
    Phyllanthus niruri (P. niruri) or Dukung Anak is a herbal plant in the Phyllanthaceae family that has been used traditionally to treat various ailments such as diabetes, jaundice, flu and cough. P. niruri contains numerous medicinal benefits such as anti-tumor and anti-carcinogenic properties and a remedy for hepatitis B viral infection. Due to its beneficial properties, P. niruri is overharvested and wild plants become scarce. This study was conducted to develop an appropriate in vitro culture protocol for the mass production of P. niruri. An aseptic culture of P. niruri was established followed by multiplication of explants using different types of basal medium and its strength and plant growth regulators manipulation. This study also established the induction of in vitro rooting utilizing various types and concentrations of auxin. Treatment of Clorox® with 30% concentration showed the lowest percentage (%) of contamination, 4.44% in P. niruri culture. Nodal segments of P. niruri were successfully induced in full-strength of Murashige and Skoog (MS) basal media with 2.33 number of shoots, 3.11 cm length of shoot and 27.91 number of leaves. In addition, explants in full-strength MS media without any additional cytokinin were recorded as the optimum results for all parameters including the number of shoots (5.0 shoots), the length of shoots (3.68 cm) and the number of leaves (27.33 leaves). Treatment of 2.5 µM indole-3-butyric acid (IBA) showed the highest number of roots (17.92 roots) and root length (1.29 cm). Rooted explants were transferred for acclimatization, and the plantlet showed over 80% of survival rate. In conclusion, plantlets of P. niruri were successfully induced and multiplied via in vitro culture, which could be a step closer to its commercialization.
  8. Usman M, Ditta A, Ibrahim FH, Murtaza G, Rajpar MN, Mehmood S, et al.
    Plants (Basel), 2021 Sep 22;10(10).
    PMID: 34685784 DOI: 10.3390/plants10101974
    Lack of proper infrastructure and the poor economic conditions of rural communities make them dependent on herbal medicines. Thus, there is a need to obtain and conserve the historic and traditional knowledge about the medicinal importance of different plants found in different areas of the world. In this regard, a field study was conducted to document the medicinal importance of local plants commonly used by the inhabitants of very old historic villages in Southern Punjab, Pakistan. In total, 58 plant species were explored, which belonged to 28 taxonomic families, as informed by 200 experienced respondents in the study area. The vernacular name, voucher number, plant parts used, and medicinal values were also documented for each species. Among the documented species, Poaceae remained the most predominant family, followed by Solanaceae and Asteraceae. The local communities were dependent on medicinal plants for daily curing of several ailments, including asthma, common cold, sore throat, fever, cardiovascular diseases, and digestive disorders. Among the reported species, leaves and the whole plant remained the most commonly utilized plant parts, while extracts (38.8%) and pastes (23.9%) were the most popular modes of utilization. Based on the ICF value, the highest value was accounted for wound healing (0.87), followed by skincare, nails, hair, and teeth disorders (0.85). The highest RFC value was represented by Acacia nilotica and Triticum aestivum (0.95 each), followed by Azadirachta indica (0.91). The highest UV was represented by Conyza canadensis and Cuscuta reflexa (0.58 each), followed by Xanthium strumarium (0.37). As far as FL was concerned, the highest value was recorded in the case of Azadirachta indica (93.4%) for blood purification and Acacia nilotica (91.1%) for sexual disorders. In conclusion, the local inhabitants primarily focus on medicinal plants for the treatment of different diseases in the very old historic villages of Southern Punjab, Pakistan. Moreover, there were various plants in the study area that have great ethnobotanical potential to treat various diseases, as revealed through different indices.
  9. Zuhar LM, Madihah AZ, Ahmad SA, Zainal Z, Idris AS, Shaharuddin NA
    Plants (Basel), 2021 Sep 27;10(10).
    PMID: 34685835 DOI: 10.3390/plants10102026
    Basal stem rot (BSR) disease caused by pathogenic fungus Ganoderma boninense is a significant concern in the oil palm industry. G. boninense infection in oil palm induces defense-related genes. To understand oil palm defense mechanisms in response to fungal invasion, we analyzed differentially expressed genes (DEGs) derived from RNA-sequencing (RNA-seq) transcriptomic libraries of oil palm roots infected with G. boninense. A total of 126 DEGs were detected from the transcriptomic libraries of G. boninense-infected root tissues at different infection stages. Functional annotation via pathway enrichment analyses revealed that the DEGs were involved in the defense response against the pathogen. The expression of the selected DEGs was further confirmed using real-time quantitative PCR (qPCR) on independent oil palm seedlings and mature palm samples. Seven putative defense-related DEGs consistently showed upregulation in seedlings and mature plants during G. boninense infection. These seven genes might potentially be developed as biomarkers for the early detection of BSR in oil palm.
  10. Rahaman F, Juraimi AS, Rafii MY, Uddin MK, Hassan L, Chowdhury AK, et al.
    Plants (Basel), 2021 Sep 26;10(10).
    PMID: 34685826 DOI: 10.3390/plants10102017
    Rice has been subjected to a great deal of stress during its brief existence, but it nevertheless ranked first among cereal crops in terms of demand and productivity. Weeds are characterized as one of the major biotic stresses by many researchers. This research aims to determine the most potential allelopathic rice variety among selected rice accessions. For obtaining preeminent varieties, seventeen rice genotypes were collected from Bangladesh and Malaysia. Two prevalent procedures, relay seeding and the sandwich technique were employed to screen the seventeen rice (donor) accessions against barnyard grass (tested plant). In both approaches, only the BR17 variety demonstrated substantial inhibition of germination percentage, root length, and dry matter of barnyard grass. The rice variety BR17 exclusively took the zenith position, and it inhibited the development of barnyard grass by more than 40-41% on an average. BR17 is originated from KN-1B-361-1-8-6-10 (Indonesia) and developed by the Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh in 1985, having a high yielding capacity of more than 6 t/ha. Our study suggested that the usage of the allelopathy-weed inverse relationship to treat the weed problem can be a fantastic choice in the twenty-first century.
  11. Karlson CKS, Mohd-Noor SN, Nolte N, Tan BC
    Plants (Basel), 2021 Sep 29;10(10).
    PMID: 34685863 DOI: 10.3390/plants10102055
    RNA-guided genomic transcriptional regulation tools, namely clustered regularly interspaced short palindromic repeats interference (CRISPRi) and CRISPR-mediated gene activation (CRISPRa), are a powerful technology for gene functional studies. Deriving from the CRISPR/Cas9 system, both systems consist of a catalytically dead Cas9 (dCas9), a transcriptional effector and a single guide RNA (sgRNA). This type of dCas9 is incapable to cleave DNA but retains its ability to specifically bind to DNA. The binding of the dCas9/sgRNA complex to a target gene results in transcriptional interference. The CRISPR/dCas9 system has been explored as a tool for transcriptional modulation and genome imaging. Despite its potential applications and benefits, the challenges and limitations faced by the CRISPR/dCas9 system include the off-target effects, protospacer adjacent motif (PAM) sequence requirements, efficient delivery methods and the CRISPR/dCas9-interfered crops being labeled as genetically modified organisms in several countries. This review highlights the progression of CRISPR/dCas9 technology as well as its applications and potential challenges in crop improvement.
  12. El-Sohaimy SA, Androsova NV, Toshev AD, El Enshasy HA
    Plants (Basel), 2022 Oct 24;11(21).
    PMID: 36365277 DOI: 10.3390/plants11212825
    (1) Background: Hemp seeds are a source of plant-based protein, making them an appropriate supplement to a plant-based diet. The current work was focused on the preparation of the protein isolate from the hemp seeds with eco-friendly and cheap technology. Moreover, it evaluated the physicochemical and functional properties of hemp protein isolate for its potential application in food manufacturing. (2) Methods: The protein content of hemp seeds has been isolated through two main steps: (1) extraction of the protein content of an alkaline pH (10-12); (2) precipitation of the extracted protein on an acidic pH as an isoelectric point (pH = 4.5). (3) Results: The edastin protein is the most predominant protein in the protein profile with a molecular weight of 58.1 KDa beside albumin with a molecular weight of 31.5 KDa. The FTIR spectrum detected the absorption peaks of the amide I at 1750 and 1600 cm-1, which pointed to C=O stretching while N-H stretching at 1650-1580 cm-1. The peak at 3250 is found to be related to N-H stretching of the aliphatic primary amine (3400-3300 cm-1) and the N-H stretching for the secondary (II) amine appeared at 3350-3310 cm-1. The Hemp protein isolate (HPI) showed a high content of arginine (15.52 g/100 g), phenylalanine + tyrosine (9.63 g/100 g), methionine + cysteine (5.49 g/100 g), leucine + isoleucine (5.21 g/100 g), and valine (4.53 g/100 g). It contains a moderate level of threonine (3.29 g/100 g) and lysine (2.50 g/100 g) with tryptophan as the limiting amino acid (0.22 g/100 g). The HPI showed an appropriate water-and-oil holding capacity (4.5 ± 2.95 and 2.33 ± 1.88 mL/g, respectively). The foaming capacity of the HPI was increased with increasing the pH values to reach the maximum value at pH 11 (67.23 ± 3.20%). The highest emulsion ability index of the HPI was noted at pH 9 (91.3 ± 2.57 m2/g) with low stability (19.15 ± 2.03). (4) Conclusions: A strong positive correlation (r = 0.623) was shown between protein concentration and solubility. The current easy-to-use, cheap, and eco-friendly technology provides the industrial sector with a cheap protein isolate for manufacturing protein-rich diet and beverages. The HPI showed a good nutritional quality and functional properties that might be helpful in utilizing it in different food products such as beverages and bakery products.
  13. Tan HT, Yusoff FM, Khaw YS, Ahmad SA, Shaharuddin NA
    Plants (Basel), 2021 Nov 01;10(11).
    PMID: 34834721 DOI: 10.3390/plants10112358
    Phycobiliproteins are gaining popularity as long-term, high-value natural products which can be alternatives to synthetic products. This study analyzed research trends of phycobiliproteins from 1909 to 2020 using a bibliometric approach based on the Scopus database. The current findings showed that phycobiliprotein is a burgeoning field in terms of publications outputs with "biochemistry, genetics, and molecular biology" as the most related and focused subject. The Journal of Applied Phycology was the most productive journal in publishing articles on phycobiliproteins. Although the United States of America (U.S.A.) contributed the most publications on phycobiliproteins, the Chinese Academy of Sciences (China) is the institution with the largest number of publications. The most productive author on phycobiliproteins was Glazer, Alexander N. (U.S.A.). The U.S.A. and Germany were at the forefront of international collaboration in this field. According to the keyword analysis, the most explored theme was the optimization of microalgae culture parameters and phycobiliproteins extraction methods. The bioactivity properties and extraction of phycobiliproteins were identified as future research priorities. Synechococcus and Arthrospira were the most cited genera. This study serves as an initial step in fortifying the phycobiliproteins market, which is expected to exponentially expand in the future. Moreover, further research and global collaboration are necessary to commercialize phycobiliproteins and increase the consumer acceptability of the pigments and their products.
  14. Othman HIA, Alkatib HH, Zaid A, Sasidharan S, Rahiman SSF, Lee TP, et al.
    Plants (Basel), 2022 Dec 27;12(1).
    PMID: 36616263 DOI: 10.3390/plants12010134
    The essential oil derived from Citrus plants has long been used for medicinal purposes, due to its broad spectrum of therapeutic characteristics. To date, approximately 162 Citrus species have been identified, and many investigational studies have been conducted to explore the pharmacological potential of Citrus spp. oils. This study investigated the volatile constituents of essential oil distilled from the leaves of C. hystrix, C. limon, C. pyriformis, and C. microcarpa, using gas chromatography-quadrupole mass spectrometry. A total of 80 secondary compounds were tentatively identified, representing 84.88-97.99% of the total ion count and mainly comprising monoterpene (5.20-76.15%) and sesquiterpene (1.36-27.14%) hydrocarbons, oxygenated monoterpenes (3.91-89.52%) and sesquiterpenes (0.21-38.87%), and other minor chemical classes (0.10-0.52%). In particular, 27 compounds (1.19-39.06%) were detected across all Citrus species. Principal component analysis of the identified phytoconstituents and their relative quantities enabled differentiation of the Citrus leaf oils according to their species, with the loading variables contributing to these metabolic differences being identified. The Citrus leaf oils were tested for their antioxidant and antiproliferative activities using 2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. The results indicated that C. limon displayed the highest DPPH radical scavenging ability (IC50 value of 29.14 ± 1.97 mg/mL), while C. hystrix exhibited the lowest activity (IC50 value of 279.03 ± 10.37 mg/mL). On the other hand, all the Citrus oils exhibit potent antiproliferative activities against the HeLa cervical cancer cell line, with IC50 values of 11.66 μg/mL (C. limon), 20.41 μg/mL (C. microcarpa), 25.91 μg/mL (C. hystrix), and 87.17 μg/mL (C. pyriformis).
  15. Taha D, El Hajjaji S, Mourabit Y, Bouyahya A, Lee LH, El Menyiy N, et al.
    Plants (Basel), 2022 Dec 02;11(23).
    PMID: 36501387 DOI: 10.3390/plants11233348
    Vachellia tortilis is a medicinal plant of the Fabaceae family, widely distributed in arid and semi-arid regions of North, East and Southern Africa, the Middle East and the Arabian Peninsula. In traditional medicine. It's commonly used to treat certain ailments, including diabetes, asthma, hepatitis and burns. Different scientific search databases were used to obtain data on V. tortilis, notably Google Scholar, Scopus, Wiley Online, Scifinder, Web of Science, ScienceDirect, SpringerLink, and PubMed. The knowledge of V. tortilis was organized based on ethnomedicinal use, phytochemistry, and pharmacological investigations. Phytochemical studies revealed the presence of a variety of phytocompounds, including fatty acids, monosaccharides, flavonoids, chalcones, and alcohols. Essential oils and organic extracts prepared from V. tortilis showed several biological properties, specifically antibacterial, antifungal, antiparasitic, antioxidant, antiproliferative, anti-diabetic, and anti-inflammatory effects. Antimicrobial and antiparasitic activities are due to the disturbance of cellular membranes and ultra-structural changes triggered by V. tortilis phytochemicals. While physiological and molecular processes such as apoptosis induction, preventing cell proliferation, and inflammatory mediators are responsible for the anti-diabetic, anti-cancer, and anti-inflammatory activities. However, further investigations concerning pharmacodynamics and pharmacokinetics should be carried out to validate their clinical applications.
  16. Bashar HMK, Juraimi AS, Ahmad-Hamdani MS, Uddin MK, Asib N, Anwar MP, et al.
    Plants (Basel), 2022 Nov 23;11(23).
    PMID: 36501249 DOI: 10.3390/plants11233209
    This current investigation was undertaken both in laboratory and glasshouse for documentation and quantification of phytochemicals from different parts of the parthenium (Parthenium hysterophorus L.) plant through LC-MS and HPLC to study their effect on two crops namely, Bambara groundnut (Vigna subterranean L.) and maize (Zea mays L.), and six different types of weed e.g., Digitaria sanguinalis, Eleusine indica, Ageratum conyzoides, Cyperus iria, Euphorbia hirta, and Cyperus difformis. The parthenium methanolic leaf extracts at 25, 50, 75, and 100 g L-1 were sprayed in the test crops and weeds to assess their physiological and biochemical reactions after 6, 24, 48, and 72 h of spraying these compounds (HAS). The LC-MS analysis confirmed seven types of phytochemicals (caffeic acid, ferulic acid, vanillic acid, parthenin, chlorogenic acid, quinic acid, and p-anisic acid) in the parthenium leaf extract that were responsible for the inhibition of tested crops and weeds. From the HPLC analysis, higher amounts in leaf methanol extracts (40,752.52 ppm) than those of the stem (2664.09 ppm) and flower extracts (30,454.33 ppm) were recorded. Parthenium leaf extract at 100 g L-1 had observed higher phytotoxicity on all weed species except C. difformis. However, all crops were found safe under this dose of extraction. Although both crops were also affected to some extent, they could recover from the stress after a few days. The photosynthetic rate, transpiration rate, stomatal conductance, carotenoid and chlorophyll content were decreased due to the application of parthenium leaf extract. However, when parthenium leaf extract was applied at 100 g L-1 for 72 h, the malondialdehyde (MDA) and proline content were increased in all weeds. Enzymatic antioxidant activity (e.g., superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) contents) were also elevated as a result of the sprayed parthenium leaf extract. The negative impact of physiological and biochemical responses as a consequence of the parthenium leaf extract led the weed species to be stressed and finally killed. The current findings show the feasibility of developing bioherbicide from the methanolic extract of parthenium leaf for controlling weeds, which will be cost-effective, sustainable, and environment friendly for crop production during the future changing climate.
  17. Chin-Hashim NF, Khaled AY, Jamaludin D, Abd Aziz S
    Plants (Basel), 2022 Dec 05;11(23).
    PMID: 36501412 DOI: 10.3390/plants11233373
    The global palm oil industry is targeting an increased oil extraction rate in oil palm milling to meet global demand. This can be achieved through the certification of mills and adherence to bunch grading as part of ensuring that only high-quality and ripe fresh fruit bunches are accepted and processed at all mills. However, the current grading process requires the analysis of oil palm bunches, which is laborious and tedious or prone to error due to human subjectivity. This paper introduces a non-destructive technique to predict the moisture and oil content in oil palm fruitlets using electrical impedance spectroscopy. In total, 90 samples of oil palm fruitlets at different stages of ripeness were acquired. Electrical impedance measurement of each fruitlet was done using electrocardiogram (ECG) electrodes connected to an LCR meter at frequencies of 1 kHz, 10 kHz, 20 kHz, and 100 kHz. The actual oil content in the fruitlets was determined using the Soxhlet extraction method, while the actual moisture content was determined using a standard oven-drying method. The variation of electrical impedance values at each frequency was analyzed. At 100 kHz, the correlation coefficients relating the electrical impedance to the moisture and oil content were around -0.84 and 0.80, respectively. Predictions of the moisture and oil content using linear regression of the impedance measurements at 100 kHz gave RMSE values of 5.85% and 5.71%, respectively. This information is useful for oil palm fruit grading and oil yield production estimation in the palm oil industry.
  18. Baharin A, Ting TY, Goh HH
    Plants (Basel), 2023 Jan 15;12(2).
    PMID: 36679121 DOI: 10.3390/plants12020408
    Systems biology has been increasingly applied with multiple omics for a holistic comprehension of complex biological systems beyond the reductionist approach that focuses on individual molecules. Different high-throughput omics approaches, including genomics, transcriptomics, metagenomics, proteomics, and metabolomics have been implemented to study the molecular mechanisms of botanical carnivory. This covers almost all orders of carnivorous plants, namely Caryophyllales, Ericales, Lamiales, and Oxalidales, except Poales. Studies using single-omics or integrated multi-omics elucidate the compositional changes in nucleic acids, proteins, and metabolites. The omics studies on carnivorous plants have led to insights into the carnivory origin and evolution, such as prey capture and digestion as well as the physiological adaptations of trap organ formation. Our understandings of botanical carnivory are further enhanced by the discoveries of digestive enzymes and transporter proteins that aid in efficient nutrient sequestration alongside dynamic molecular responses to prey. Metagenomics studies revealed the mutualistic relationships between microbes and carnivorous plants. Lastly, in silico analysis accelerated the functional characterization of new molecules from carnivorous plants. These studies have provided invaluable molecular data for systems understanding of carnivorous plants. More studies are needed to cover the diverse species with convergent evolution of botanical carnivory.
  19. Shahbaz M, Akram A, Mehak A, Haq EU, Fatima N, Wareen G, et al.
    Plants (Basel), 2023 Feb 08;12(4).
    PMID: 36840109 DOI: 10.3390/plants12040761
    In the present study, SeNPs were synthesized using Melia azedarach leaf extracts and investigated for growth promotion in wheat under the biotic stress of spot blotch disease. The phytosynthesized SeNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and Fourier-transformed infrared spectroscopy (FTIR). The in vitro efficacy of different concentrations of phytosynthesized SeNPs (i.e., 100 μg/mL, 150 μg/mL, 200 μg/mL, 250 μg/mL, and 300 μg/mL) was evaluated using the well diffusion method, which reported that 300 μg/mL showed maximum fungus growth inhibition. For in vivo study, different concentrations (10, 20, 30, and 40 mg/L) of SeNPs were applied exogenously to evaluate the morphological, physiological, and biochemical parameters under control conditions and determine when infection was induced. Among all treatments, 30 mg/L of SeNPs performed well and increased the plant height by 2.34% compared to the control and 30.7% more than fungus-inoculated wheat. Similarly, fresh plant weight and dry weight increased by 17.35% and 13.43% over the control and 20.34% and 52.48% over the fungus-treated wheat, respectively. In leaf surface area and root length, our findings were 50.11% and 10.37% higher than the control and 40% and 71% higher than diseased wheat, respectively. Plant physiological parameters i.e., chlorophyll a, chlorophyll b, and total chlorophyll content, were increased 14, 133, and 16.1 times over the control and 157, 253, and 42 times over the pathogen-inoculated wheat, respectively. Our findings regarding carotenoid content, relative water content, and the membrane stability index were 29-, 49-, and 81-fold higher than the control and 187-, 63-, and 48-fold higher than the negative control, respectively. In the case of plant biochemical parameters, proline, sugar, flavonoids, and phenolic contents were recorded at 6, 287, 11, and 34 times higher than the control and 32, 107, 33, and 4 times more than fungus-inoculated wheat, respectively. This study is considered the first biocompatible approach to evaluate the potential of green-synthesized SeNPs as growth-promoting substances in wheat under the spot blotch stress and effective management strategy to inhibit fungal growth.
  20. Paterson RRM, Chidi NI
    Plants (Basel), 2023 Feb 08;12(4).
    PMID: 36840112 DOI: 10.3390/plants12040764
    The detrimental stresses of future climate change are well known and decisions are required to reduce their effects. Climate and disease stresses cause severe damage to plants and it is essential to understand how they will respond. Oil palm (OP) is an Fusarium important crop for many countries. The palm originated in Africa, where palm oil is produced in the largest amount within the continent by Nigeria. OP becomes stressed by climate change and wilt, a devastating disease of OP in Africa. Previous methods to determine the suitability of future climate on OP in continents and whole countries were applied to Nigeria, which is the first time an individual country has been assessed in this manner. Climate maps of Nigeria were divided equally into 16 regions from north to south and east to west to determine the future suitable climate for growing OP. CLIMEX and narrative modelling were used to determine suitability for growing OP and Fusarium wilt incidence for current time and 2050. Maps from published papers were employed directly thereby facilitating the procedure. A distinct latitudinal increasing trend from north to south in suitable climate was observed, which was unexpected. A decreasing longitudinal trend from west to east was also observed. These differences in suitable climates may allow refuges for OP in the future. The growth of OP in the south of Nigeria may be largely unaffected by climate change by 2050, unlike the north. The procedures allow policy decisions at state and national levels to be made from empirical data, which do not otherwise exist. States with low amounts of OP and where the climate deteriorates greatly, could usefully be abandoned. Other low palm oil producers, where the climate does not deteriorate greatly, could be encouraged to develop OP. Little requires to be done in the high producing states where the climate does not deteriorate. In all cases, the environmental impacts require thorough assessment. Climate change requires reduction as indicated in recent Conference of the Parties meetings.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links