Displaying publications 41 - 60 of 87 in total

Abstract:
Sort:
  1. Bashir MJ, Isa MH, Kutty SR, Awang ZB, Aziz HA, Mohajeri S, et al.
    Waste Manag, 2009 Sep;29(9):2534-41.
    PMID: 19523802 DOI: 10.1016/j.wasman.2009.05.004
    This study investigated the electrochemical oxidation of stabilized leachate from Pulau Burung semi-aerobic sanitary landfill by conducting laboratory experiments with sodium sulfate Na(2)SO(4) (as electrolyte) and graphite carbon electrodes. The control parameters were influent COD, current density and reaction time, while the responses were BOD removal, COD removal, BOD:COD ratio, color and pH. Na(2)SO(4) concentration was 1 g/L. Experiments were conducted based on a three-level factorial design and response surface methodology (RSM) was used to analyze the results. The optimum conditions were obtained as 1414 mg/L influent COD concentration, 79.9 mA/cm(2) current density and 4 h reaction time. This resulted in 70% BOD removal, 68% COD removal, 84% color removal, 0.04 BOD/COD ratio and 9.1 pH. Electrochemical treatment using graphite carbon electrode was found to be effective in BOD, COD and color removal but was not effective in increasing the BOD/COD ratio or enhancing biodegradability of the leachate. The color intensity of the treated samples increased at low influent COD and high current density due to corrosion of electrode material.
  2. Akinbile CO, Yusoff MS, Ahmad Zuki AZ
    Waste Manag, 2012 Jul;32(7):1387-93.
    PMID: 22456086 DOI: 10.1016/j.wasman.2012.03.002
    Performance evaluation of pilot scale sub-surface constructed wetlands was carried out in treating leachate from Pulau Burung Sanitary Landfill (PBSL). The constructed wetland was planted with Cyperus haspan with sand and gravel used as substrate media. The experiment was operated for three weeks retention time and during the experimentation, the influent and effluent samples were tested for its pH, turbidity, color, total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD(5)), ammonia nitrogen (NH(3)-N), Total phosphorus (TP), total nitrogen (TN) and also for heavy metals such as iron (Fe), magnesium (Mg), manganese (Mn) and zinc (Zn) concentrations. The results showed that the constructed wetlands with C. haspan were capable of removing 7.2-12.4% of pH, 39.3-86.6% of turbidity, 63.5-86.6% of color, 59.7-98.8% of TSS, 39.2-91.8% of COD, 60.8-78.7% of BOD(5), 29.8-53.8% of NH(3)-N, 59.8-99.7% of TP, 33.8-67.0% of TN, 34.9-59.0% of Fe, 29.0-75.0% of Mg, 51.2-70.5% of Mn, and 75.9-89.4% of Zn. The significance of removal was manifested in the quality of the effluent obtained at the end of the study. High removal efficiencies in the study proved that leachate could be treated effectively using subsurface constructed wetlands with C. haspan plant.
  3. Seng Liew C, Ren Mong G, Wei Lim J, Raksasat R, Rawindran H, Hong Leong W, et al.
    Waste Manag, 2023 Apr 20;164:238-249.
    PMID: 37086606 DOI: 10.1016/j.wasman.2023.04.013
    More energy is needed nowadays due to global population growth. Concurrently, sewage sludge generation has also increased steadily stemming from the inevitable urbanization. As such, black soldier fly larvae (BSFL) can be potentially deployed to solve both issues. This paper investigates the environmental sustainability of biodiesel production derived from sludge-fed BSFL feedstock. A cradle-to-gate life cycle assessment (LCA) was performed through SimaPro software utilizing the ReCiPe 2016 Midpoint (H) and Endpoint (H) methods. The entire LCA covered 3 main stages, including the thermal pre-treatment of sludge, BSFL rearing and processing, and lastly lipid extraction and biodiesel production. LCA showed that the sludge pre-treatment stage had the highest environmental impact, while BSFL rearing and processing had the least due to the suitable geographical climate. Electricity usage during the pre-treatment stage was the main contributing component, followed by chemical usage during biodiesel production. After normalizing, it was observed that land occupation, marine ecotoxicity, freshwater ecotoxicity and freshwater eutrophication were more impactful than the commonly studied global warming potential (GWP). Lipid content and biodiesel conversion efficiency were determined as the sensitive factors which could influence the LCA outcome. In comparison with other types of biodiesel, BSFL biodiesel had a milder impact in terms of climate change, land occupation, terrestrial acidification, marine and freshwater eutrophication. Furthermore, this biological reduction of sludge through BSFL valorization avoided sludge landfilling, which reduced up to 100 times GWP. Therefore, sludge-fed BSFL biodiesel production is an environmentally-sound and highly potential solution that should be investigated comprehensively.
  4. Quah RV, Tan YH, Mubarak NM, Kansedo J, Khalid M, Abdullah EC, et al.
    Waste Manag, 2020 Dec;118:626-636.
    PMID: 33011540 DOI: 10.1016/j.wasman.2020.09.016
    Due to its environment-friendly and replenishable characteristics, biodiesel has the potential to substitute fossil fuels as an alternative source of energy. Although biodiesel has many benefits to offer, manufacturing biodiesel on an industrial scale is uneconomical as a high cost of feedstock is required. A novel sulfonated and magnetic catalyst synthesised from a palm kernel shell (PMB-SO3H) was first introduced in this study for methyl ester or biodiesel production to reduce capital costs. The wasted palm kernel shell (PKS) biochar impregnated with ferrite Fe3O4 was synthesised with concentrated sulphuric acid through the sulfonation process. The SEM, EDX, FTIR, VSM and TGA characterization of the catalysts were presented. Then, the optimisation of biodiesel synthesis was catalysed by PMB-SO3H via the Response Surface Methodology (RSM). It was found that the maximum biodiesel yield of 90.2% was achieved under these optimum operating conditions: 65 °C, 102 min, methanol to oil ratio of 13:1 and the catalyst loading of 3.66 wt%. Overall, PMB-SO3H demonstrated acceptable catalysing capability on its first cycle, which subsequently showed a reduction of the reusability performance after 4 cycles. An important practical implication is that PMB-SO3H can be established as a promising heterogeneous catalyst by incorporating an iron layer which can substantially improve the catalyst separation performance in biodiesel production.
  5. Yusof N, Haraguchi A, Hassan MA, Othman MR, Wakisaka M, Shirai Y
    Waste Manag, 2009 Oct;29(10):2666-80.
    PMID: 19564103 DOI: 10.1016/j.wasman.2009.05.022
    Since landfilling is the common method of waste disposal in Malaysia, river water is greatly exposed to the risk of contamination from leachate unless proper leachate management is carried out. In this study, leachates from three different types of landfills, namely active uncontrolled, active controlled and closed controlled, were characterized, and their relationships with river water chemistry were examined monthly for a year. The influence of leachate on river water chemistry from each type of landfill depended on many factors, including the presence of a leachate control mechanism, leachate characteristics, precipitation, surface runoff and the applied treatment. The impact of leachate from an active uncontrolled landfill was the highest, as the organic content, NH(4)(+)-N, Cd and Mn levels appeared high in the river. At the same time, influences of leachate were also observed from both types of controlled landfills in the form of inorganic nitrogen (NH(4)(+)-N, NO(3)(-)-N and NO(2)(-)-N) and heavy metals (Fe, Cr, Ni and Mn). Improper treatment practice led to high levels of some contaminants in the stream near the closed controlled landfill. Meanwhile, the active controlled landfill, which was located near the coastline, was exposed to the risk of contamination resulting from the pyrite oxidation of the surrounding area.
  6. Thangavelu SK, Rajkumar T, Pandi DK, Ahmed AS, Ani FN
    Waste Manag, 2019 Mar 01;86:80-86.
    PMID: 30902242 DOI: 10.1016/j.wasman.2019.01.035
    Microwave assisted acid hydrolysis (H2SO4 and HCl with >0.5 mol/L) to produce bioethanol from sago pith waste (SPW) was studied. The energy consumption for microwave hydrolysis at different energy inputs and acid concentration were calculated. The overall energy consumption for bioethanol fuel production from SPW was assessed. A maximum of 88% glucose yield and 80% ethanol yield (3.1 g ethanol per 10 g SPW) were obtained using 1.0 mol/L H2SO4. Microwave hydrolysis using 1.0 mol/L H2SO4 consumed the minimum energy of 8.1 kJ to produce 1 g glucose from SPW when energy input was fixed at 54 kJ (900 W for 1 min). In general, 1 g glucose can produce 16 kJ. The overall energy consumption for fuel grade bioethanol production from SPW was 31.77 kJ per g ethanol, which was slightly higher than the lower heating values of ethanol (26.74 kJ/g ethanol).
  7. Ho GS, Faizal HM, Ani FN
    Waste Manag, 2017 Nov;69:423-430.
    PMID: 28811144 DOI: 10.1016/j.wasman.2017.08.015
    High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes.
  8. Salmiaton A, Garforth AA
    Waste Manag, 2011 Jun;31(6):1139-45.
    PMID: 21324661 DOI: 10.1016/j.wasman.2011.01.025
    Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidized bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C(2)-C(7)) remained fairly constant. For the first time, these results indicate that "waste" FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity.
  9. Manaf LA, Samah MA, Zukki NI
    Waste Manag, 2009 Nov;29(11):2902-6.
    PMID: 19540745 DOI: 10.1016/j.wasman.2008.07.015
    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.
  10. Abu Amr SS, Aziz HA
    Waste Manag, 2012 Sep;32(9):1693-8.
    PMID: 22633680 DOI: 10.1016/j.wasman.2012.04.009
    Ozonation, combined with the Fenton process (O(3)/H(2)O(2)/Fe(2+)), was used to treat matured landfill leachate. The effectiveness of the Fenton molar ratio, Fenton concentration, pH variance, and reaction time were evaluated under optimum operational conditions. The optimum removal values of chemical oxygen demand (COD), color, and NH(3)-N were found to be 65%, 98%, and 12%, respectively, for 90 min of ozonation using a Fenton molar ratio of 1 at a Fenton concentration of 0.05 mol L(-1) (1700 mg/L) H(2)O(2) and 0.05 mol L(-1) (2800 mg/L) Fe(2+) at pH 7. The maximum removal of NH(3)-N was 19% at 150 min. The ozone consumption for COD removal was 0.63 kg O(3)/kg COD. To evaluate the effectiveness, the results obtained in the treatment of stabilized leachate were compared with those obtained from other treatment processes, such as ozone alone, Fenton reaction alone, as well as combined Fenton and ozone. The combined method (i.e., O(3)/H(2)O(2)/Fe(2+)) achieved higher removal efficiencies for COD, color, and NH(3)-N compared with other studied applications.
  11. Ghani ZA, Yusoff MS, Zaman NQ, Zamri MFMA, Andas J
    Waste Manag, 2017 Apr;62:177-187.
    PMID: 28274782 DOI: 10.1016/j.wasman.2017.02.026
    This study determined the optimum conditions for preparation and adsorptive treatment of landfill leachate from banana pseudo-stem based activated carbon. Response surface methodology (RSM) based on Box-Behnken was applied to optimize the combination effect of three important reaction variables, i.e. activation temperature (°C), activation time and impregnation ratio (IR). The reaction was performed via a single step activation with ZnCl2 in a closed activation system. A series of 17 individual experiments were conducted and the results showed that the RSM based on BBD is very applicable for adsorptive removal of pollutants from landfill leachate treatment. The optimum conditions obtained by Design of Experiments (DOE) was at 761°C activation temperature, 87min activation time and 4.5g/g impregnation ratio with product yield (27%), iodine number (1101mg/g), color removal (91.2%) and COD removal (83.0%).
  12. Abu Amr SS, Aziz HA, Adlan MN
    Waste Manag, 2013 Jun;33(6):1434-41.
    PMID: 23498721 DOI: 10.1016/j.wasman.2013.01.039
    The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (<0.0001): COD, color, NH3-N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m(3) ozone, 1g/1g COD0/S2O8(2-) ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH3-N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O3/kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S2O8(2-) only, to evaluate its effectiveness. The combined method (i.e., O3/S2O8(2-)) achieved higher removal efficiencies for COD, color, and NH3-N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate.
  13. Hossain MS, Nik Ab Rahman NN, Balakrishnan V, Alkarkhi AF, Ahmad Rajion Z, Ab Kadir MO
    Waste Manag, 2015 Apr;38:462-73.
    PMID: 25636860 DOI: 10.1016/j.wasman.2015.01.003
    Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO2) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and gram-negative Escherichia coli in CSW. The effects of SC-CO2 sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO2-treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO2 exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials.
  14. Hafid HS, Nor 'Aini AR, Mokhtar MN, Talib AT, Baharuddin AS, Umi Kalsom MS
    Waste Manag, 2017 Sep;67:95-105.
    PMID: 28527863 DOI: 10.1016/j.wasman.2017.05.017
    In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H2SO4) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production.
  15. Sapkota B, Pariatamby A
    Waste Manag, 2023 Aug 01;168:83-97.
    PMID: 37285639 DOI: 10.1016/j.wasman.2023.05.052
    Most households and healthcare facilities usually dispose of contaminated, unused, or expired (CUE) medicines with municipal wastes, the disposal of which usually amounts to $790/ton in the USA and £450/ton in the UK. Solid (e.g., tablets, capsules, powders) and semi-solid (e.g., ointment, creams) pharmaceuticals are managed with incineration/pyrolysis, encapsulation, and engineered landfills, whereas wastewater treatment plants (WWTPs) are recommended for liquid pharmaceutical wastes (PWs). However, to date, the sustainability and eco-friendliness profile of these techniques are only subjectively ensured, leading to controversial viewpoints in many guidelines. Each technique has relative strengths and weaknesses, and their comparative weighting to maximize these profiles is sought after. The present comprehensive review aims to fulfil knowledge gaps in this regard. Four electronic databases (e.g., PubMed/MEDLINE, Scopus, and ScienceDirect) were searched for PW management (PWM)-related qualitative and quantitative articles published till December 31, 2022. Articles without details of waste disposal techniques and their health and environmental impacts were excluded. Based on the literature review, we determine that incineration can be considered a sustainable option for solid and semi-solid PWs, and WWTPs can be eco-friendly for liquid PWs, whereas encapsulation and landfilling are less sustainable. It is high time that objectively proven sustainable and eco-friendly techniques be implemented for PWM based on their dosage forms or nature of hazards. Medicine take-back, eco-pharmacovigilance, extended producer responsibility, co-payment, and life cycle analysis of pharmaceuticals focusing on reduction, reuse/re-dispensing can be integrated to make existing models sustainable, circular, and eco-friendly.
  16. Aziz HA, Yusoff MS, Adlan MN, Adnan NH, Alias S
    Waste Manag, 2004;24(4):353-8.
    PMID: 15081062
    Limestone has been proven effective in removing metals from water and wastewater. A literature review indicated that limestone is capable of removing heavy metals such as Cu, Zn, Cd, Pb, Ni, Cr, Fe and Mn are through a batch process or by filtration technique. The removal capability is reported at up to 90%. However, to date most of the studies have been focused on synthetic wastewater. The present study attempts to investigate the suitability of limestone to attenuate total iron (Fe) from semi aerobic leachate at Pulau Burung Landfill Site in Penang, Malaysia. Iron was found in significant quantities at the landfill site. The study also aims to establish the Fe isotherm and breakthrough time of the proposed limestone filter for post-treatment to the migrating landfill leachate before its release to the environment. The Fe isotherms were established using a batch equilibrium test, while the breakthrough characteristics were determined using continuous flow permeating through a limestone column. The latter was used in order to simulate the continuous flow of leachate that would occur in the proposed limestone filter. The limestone media used in the experiment contain more than 90% CaCO3 with particle sizes ranging from 2 to 4 mm. Four filter columns (each 150 mm in diameter and 1000 mm depth) were installed at the landfill site. Metal loadings were kept below 0.5 kg /m3 day and the experiment was run continuously for 30 days. Initial results indicated that 90% of Fe can be removed from the leachate based on retention time of 57.8 min and surface loading of 12.2 m3/m2 day. For the batch study on the Fe isotherm, the results indicated that limestone is potentially useful as an alternative leachate treatment system at a relatively low cost.
  17. Milano J, Ong HC, Masjuki HH, Silitonga AS, Kusumo F, Dharma S, et al.
    Waste Manag, 2018 Oct;80:435-449.
    PMID: 30455026 DOI: 10.1016/j.wasman.2018.09.005
    Recycling waste cooking vegetable oils by reclaiming and using these oils as biodiesel feedstocks is one of the promising solutions to address global energy demands. However, producing these biodiesels poses a significant challenge because of their poor physicochemical properties due the high free fatty acid content and impurities present in the feedstock, which will reduce the biodiesel yields. Hence, this study implemented the following strategy in order to address this issue: (1) 70 vol% of waste cooking vegetable oil blended with 30 vol% of Calophyllum inophyllum oil named as WC70CI30 used to alter its properties, (2) a three-stage process (degumming, esterification, and transesterification) was conducted which reduces the free fatty acid content and presence of impurities, and (3) the transesterification process parameters (methanol/oil ratio, reaction temperature, reaction time, and catalyst concentration) were optimized using response surface methodology in order to increase the biodiesel conversion yield. The results show that the WC70CI30 biodiesel has favourable physicochemical properties, good cold flow properties, and high oxidation stability (22.4 h), which fulfil the fuel specifications stated in the ASTM D6751 and EN 14214 standards. It found that the WC70CI30 biodiesel has great potential as a diesel substitute without the need for antioxidants and pour point depressants.
  18. Lasekan A, Abu Bakar F, Hashim D
    Waste Manag, 2013 Mar;33(3):552-65.
    PMID: 22985619 DOI: 10.1016/j.wasman.2012.08.001
    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications.
  19. Qamaruz-Zaman N, Kun Y, Rosli RN
    Waste Manag, 2015 Jan;35:187-90.
    PMID: 25445259 DOI: 10.1016/j.wasman.2014.09.017
    Food wastes with high moisture and organic matter content are likely to emit odours as a result of the decomposition process. The management of odour from decomposing wastes is needed to sustain the interest of residents and local councils in the source separation of kitchen wastes. This study investigated the potential of baking soda (at 50 g, 75 g and 100g per kg food waste) to control odour from seven days stored food waste. It was found that 50 g of baking soda, spread at the bottom of 8l food wastes bin, can reduce the odour by about 70%. A higher amount (above 100g) is not advised as a pH higher than 9.0 may be induced leading to the volatilization of odorous ammonia. This research finding is expected to benefit the waste management sector, food processing industries as well as the local authorities where malodour from waste storage is a pressing issue.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links