Displaying publications 41 - 60 of 87 in total

Abstract:
Sort:
  1. Tie HO, Che Man H, Koyama M, Syukri F, Md Yusoff F, Toda T, et al.
    Waste Manag, 2024 May 15;180:55-66.
    PMID: 38520898 DOI: 10.1016/j.wasman.2024.03.021
    Due to the rapid growth of the aquaculture industry, large amounts of organic waste are released into nature and polluted the environment. Traditional organic waste treatment such as composting is a time-consuming process that retains the ammonia (NH3) in the compost, and the compost produced has little economic value as organic fertilizer. Illegal direct discharge into the environment is therefore widespread. This study investigates the recovery of NH3 through thermophilic composting of shrimp aquaculture sludge (SAS) and its application as a soil conditioner for the growth of mango plants. A maximum composting temperature of 57.10 °C was achieved through self-heating in a 200 L bench-scale reactor, resulting in NH3 recovery of 224.04 mol/ton-ds after 14 days. The addition of calcium hydroxide and increased aeration have been shown to increase NH3 volatilization. The recovered NH3 up to 3 kg-N can be used as a source of clean nitrogen for high-value microalgae cultivation, with a theoretical yield of up to 34.85 kg-algae of microalgae biomass from 1 ton-ds of SAS composting. Despite the high salinity, SAS compost improved mango plant growth and disease resistance. These results highlight the potential of SAS compost as a sustainable source of clean nitrogen for microalgae cultivation and soil conditioner, contributing to a waste-free circular economy through nutrient recycling and sustainable agriculture.
  2. Qamaruz-Zaman N, Milke MW
    Waste Manag, 2012 Dec;32(12):2426-30.
    PMID: 22819598 DOI: 10.1016/j.wasman.2012.06.023
    Research was conducted to determine suitable chemical parameters as indicators of odor from decomposing food wastes. Prepared food scraps were stored in 18 l plastic buckets (2 kg wet weight each) at 20 °C and 8 °C to reproduce high and low temperature conditions. After 1, 3, 7, 10 and 14 days of storage, the odor from the buckets were marked to an intensity scale of 0 (no odor) to 5 (intense) and the corresponding leachate analyzed for volatile fatty acids, ammonia and total organic carbon. A linear relationship between odor intensity and the measured parameter indicates a suitable odor indicator. Odor intensified with longer storage period and warmer surroundings. The study found ammonia and isovaleric acid to be promising odor indicators. For this food waste mixture, offensive odors were emitted if the ammonia and isovaleric acid contents exceeded 360 mg/l and 940 mg/l, respectively.
  3. Afroz R, Masud MM
    Waste Manag, 2011 Apr;31(4):800-8.
    PMID: 21169007 DOI: 10.1016/j.wasman.2010.10.028
    This study employed contingent valuation method to estimate the willingness to pay (WTP) of the households to improve the waste collection system in Kuala Lumpur, Malaysia. The objective of this study is to evaluate how household WTP changes when recycling and waste separation at source is made mandatory. The methodology consisted of asking people directly about their WTP for an additional waste collection service charge to cover the costs of a new waste management project. The new waste management project consisted of two versions: version A (recycling and waste separation is mandatory) and version B (recycling and waste separation is not mandatory). The households declined their WTP for version A when they were asked to separate the waste at source although all the facilities would be given to them for waste separation. The result of this study indicates that the households were not conscious about the benefits of recycling and waste separation. Concerted efforts should be taken to raise environmental consciousness of the households through education and more publicity regarding waste separation, reducing and recycling.
  4. He X, Lou C, Qiao Y, Lim M
    Waste Manag, 2020 Feb 01;102:486-491.
    PMID: 31756685 DOI: 10.1016/j.wasman.2019.11.015
    In order to address slagging, fouling and high-temperature corrosion problems caused by alkali metals in Municipal Solid Waste (MSW), in-situ measurement of alkali metal in MSW incinerators is needed. The paper presents experimental measurements of temperatures and alkali metal concentrations in two MSW incinerators based on Flame Emission Spectroscopy (FES). Through the analysis of spontaneous emission spectra and a calibration procedure, the concentration of gas phase sodium (Na) and potassium (K), temperature and thermal radiation in the incinerator were in-situ measured by a portable spectral system simultaneously. Experimental results showed MSW composition has significant effect on the measured gaseous Na and K. Higher volatile content in MSW may enhance the alkali metal emission. Besides that, the released gaseous Na and K in the two incinerators are correlated with temperature in incinerators. The study provided a low cost and effective solution for in-situ measurement of temperature and alkali metal concentration in MSW incinerators.
  5. Liang Y, Tan Q, Song Q, Li J
    Waste Manag, 2021 Jan 01;119:242-253.
    PMID: 33091837 DOI: 10.1016/j.wasman.2020.09.049
    It is well known that Asia generates and receives large quantities of plastic waste. Through a detailed study of plastic waste generation and trade, the management and treatment of plastic waste in Asia were analyzed from the regional perspective. The amounts of plastic waste in municipal solid waste and in industrial solid waste were estimated to be 79 Mt and 42 Mt, respectively, in Asia. The overall treatment and recycling status in Asia are unsatisfactory. Asia imported 74% of the plastic waste in the world in 2016, and China (mainland) imported the most plastic waste until 2017, with 5.8 to 8.3 Mt. In 2017, about half the plastic waste imported by Asia came from other regions, and after subtracting the exported quantity, 98% of the plastic waste was left in Asia for treatment and disposal. The plastic waste imported by Asia declined about 72% in monetary value in 2018. There is still a large gap between the plastic waste quantity imported to Asia and that exported from Asia. China's ban of plastic waste imports caused import quantities to drop to 52 kt in 2018, simultaneously, exports from the largest exporting countries or regions such as Hong Kong (China), the USA, Japan, and Germany decreased. While Vietnam, Malaysia and some other Asian countries and regions saw significant increases in plastic waste imports from 2016 to 2018. Considering this situation, countries in Asia are starting to strictly limit plastic waste imports from other countries.
  6. Mohajerani A, Kadir AA, Larobina L
    Waste Manag, 2016 Jun;52:228-44.
    PMID: 26975623 DOI: 10.1016/j.wasman.2016.03.012
    The disposal and littering of cigarette butts (CBs) is a serious environmental problem. Trillions of cigarettes are produced every year worldwide, resulting in millions of tonnes of toxic waste being dumped into the environment in the form of cigarette butts. As CBs have poor biodegradability, it can take many years for them to break down. This paper reviews and presents some of the results of a study on the recycling of CBs into fired clay bricks. Bricks with 2.5%, 5%, 7.5%, and 10% CB content by weight were manufactured and tested, and then compared against control clay bricks with 0% CB content. The results showed that the dry density decreased by up to 30% and the compressive strength decreased by 88% in bricks with 10% CBs. The calculated compressive strength of bricks with 1% CBs was determined to be 19.53Mpa. To investigate the effect of mixing time, bricks with 7.5% CB content were manufactured with different mixing times of 5, 10, and 15min. To test the effect of heating time on the properties of CB bricks, the heating rate used during manufacturing was changed to 0.7, 2, 5, and 10°Cmin(-1). Bricks with 0% and 5% CB content were fired with these heating rates. Leachate tests were carried out for bricks with 0%, 2.5%, 5%, and 10% CB content. The emissions released during firing were tested for bricks with 0% and 5% CB content using heating rates of 0.7, 2, 5, and 10°Cmin(-1). The gases tested were carbon monoxide (CO), carbon dioxide (CO2), chlorine (Cl2), nitrogen oxide (NO), and hydrogen cyanide (HCN). Finally, estimations were made for the energy that could be saved by firing bricks incorporating CBs. Calculations showed that up to 58% of the firing energy could potentially be saved. Bricks were shown to be a viable solution for the disposal of CBs. They can reduce contamination caused by cigarette butts and provide a masonry construction material that can be either loadbearing or non-loadbearing, depending on the quantity of CBs incorporated. This paper proposes the use of bricks with 1% CB content throughout the brick-manufacturing industry. If bricks contained as little as 1% CB content, they would still provide a solution for the issue of CB recycling while maintaining properties very similar to those of a non-CB brick. Our calculations show that, theoretically, only 2.5% of the world's annual brick production is necessary to completely offset the worldwide, annual cigarette production.
  7. Seng Liew C, Ren Mong G, Wei Lim J, Raksasat R, Rawindran H, Hong Leong W, et al.
    Waste Manag, 2023 Apr 20;164:238-249.
    PMID: 37086606 DOI: 10.1016/j.wasman.2023.04.013
    More energy is needed nowadays due to global population growth. Concurrently, sewage sludge generation has also increased steadily stemming from the inevitable urbanization. As such, black soldier fly larvae (BSFL) can be potentially deployed to solve both issues. This paper investigates the environmental sustainability of biodiesel production derived from sludge-fed BSFL feedstock. A cradle-to-gate life cycle assessment (LCA) was performed through SimaPro software utilizing the ReCiPe 2016 Midpoint (H) and Endpoint (H) methods. The entire LCA covered 3 main stages, including the thermal pre-treatment of sludge, BSFL rearing and processing, and lastly lipid extraction and biodiesel production. LCA showed that the sludge pre-treatment stage had the highest environmental impact, while BSFL rearing and processing had the least due to the suitable geographical climate. Electricity usage during the pre-treatment stage was the main contributing component, followed by chemical usage during biodiesel production. After normalizing, it was observed that land occupation, marine ecotoxicity, freshwater ecotoxicity and freshwater eutrophication were more impactful than the commonly studied global warming potential (GWP). Lipid content and biodiesel conversion efficiency were determined as the sensitive factors which could influence the LCA outcome. In comparison with other types of biodiesel, BSFL biodiesel had a milder impact in terms of climate change, land occupation, terrestrial acidification, marine and freshwater eutrophication. Furthermore, this biological reduction of sludge through BSFL valorization avoided sludge landfilling, which reduced up to 100 times GWP. Therefore, sludge-fed BSFL biodiesel production is an environmentally-sound and highly potential solution that should be investigated comprehensively.
  8. Izhar S, Yoshida H, Nishio E, Utsumi Y, Kakimori N
    Waste Manag, 2019 Jun 01;92:15-20.
    PMID: 31160022 DOI: 10.1016/j.wasman.2019.04.060
    With the advancement of the fourth industrial revolution, the demand for LCD has widely accelerated as monitoring screens for computers and cell phones. Consequently, old LCD panels are expected to end up as a tremendous amount of e-waste. Apart from transparent electrodes and transistor, waste LCD panel also contains hazardous liquid crystal compound that can contaminate the landfill site. Thus, removing the material from waste LCD was investigated. In this study, water at subcritical state was applied at temperatures between 100 and 360 °C. Initially, the liquid crystals were extracted using toluene and were used to compare with subcritical water. The specific compounds of the liquid crystals were not identified. The liquid crystals (12 mg/g-LCD) were entirely removed from the LCD panel when treated above 300 °C by means of extraction with the subcritical water. Although liquid crystal was successfully removed, recovery was complicated due to the degradation of liquid crystals above 250 °C. A recovery of 70% was obtained at 250 °C without deformation of the molecules. Consequently, this study has shown that although it is not practical to recover LC from LCD panel waste using subcritical water, liquid crystals can be removed efficiently. This method is auspicious in reducing hazardous liquid crystal from waste LCD panel before their disposals at landfill sites.
  9. Begum RA, Siwar C, Pereira JJ, Jaafar AH
    Waste Manag, 2007;27(12):1902-9.
    PMID: 17110094
    Malaysia is facing an increase in the generation of waste and of accompanying problems with the disposal of this waste. In the last two decades, extensive building and infrastructure development projects have led to an increase in the generation of construction waste material. The construction industry has a substantial impact on the environment, and its environmental effects are in direct relation to the quality and quantity of the waste it generates. This paper discusses general characteristics of the construction contractors, the contractors' willingness to pay (WTP) for improved construction waste management, determining factors which affect the amount of their willingness to pay, and suggestions and policy implications in the perspective of construction waste management in Malaysia. The data in this study is based on contractors registered with the construction industry development board (CIDB) of Malaysia. Employing the open ended contingent valuation method, the study assessed the contractors' average maximum WTP for improved construction waste management to be RM69.88 (1US$=3.6 RM) per tonne of waste. The result shows that the average maximum WTP is higher for large contractors than for medium and small contractors. The highest average maximum WTP value is RM88.00 for Group A (large contractors) RM78.25 for Group B (medium-size contractors) and RM55.80 for Group C (small contractors). One of the contributions of this study is to highlight the difference of CIDB registration grade in the WTP for improved construction waste management. It is found that contractors' WTP for improved waste collection and disposal services increases with the increase in contractors' current paid up capital. The identified factors and determinants of the WTP will assist the formulation of appropriate policies in addressing the construction waste problem in Malaysia and indirectly improve the quality of construction in the country.
  10. Karim Ghani WA, Rusli IF, Biak DR, Idris A
    Waste Manag, 2013 May;33(5):1276-81.
    PMID: 23415709 DOI: 10.1016/j.wasman.2012.09.019
    Tremendous increases in biodegradable (food waste) generation significantly impact the local authorities, who are responsible to manage, treat and dispose of this waste. The process of separation of food waste at its generation source is identified as effective means in reducing the amount food waste sent to landfill and can be reused as feedstock to downstream treatment processes namely composting or anaerobic digestion. However, these efforts will only succeed with positive attitudes and highly participations rate by the public towards the scheme. Thus, the social survey (using questionnaires) to analyse public's view and influencing factors towards participation in source separation of food waste in households based on the theory of planned behaviour technique (TPB) was performed in June and July 2011 among selected staff in Universiti Putra Malaysia, Serdang, Selangor. The survey demonstrates that the public has positive intention in participating provided the opportunities, facilities and knowledge on waste separation at source are adequately prepared by the respective local authorities. Furthermore, good moral values and situational factors such as storage convenience and collection times are also encouraged public's involvement and consequently, the participations rate. The findings from this study may provide useful indicator to the waste management authorities in Malaysia in identifying mechanisms for future development and implementation of food waste source separation activities in household programmes and communication campaign which advocate the use of these programmes.
  11. Chong TL, Matsufuji Y, Hassan MN
    Waste Manag, 2005;25(7):702-11.
    PMID: 16009304
    Most of the existing solid waste landfill sites in developing countries are practicing either open dumping or controlled dumping. Proper sanitary landfill concepts are not fully implemented due to technological and financial constraints. Implementation of a fully engineered sanitary landfill is necessary and a more economically feasible landfill design is crucial, particularly for developing countries. This study was carried out by focusing on the economics from the development of a new landfill site within a natural clay area with no cost of synthetic liner up to 10 years after its closure by using the Fukuoka method semi-aerobic landfill system. The findings of the study show that for the development of a 15-ha landfill site in Malaysia with an estimated volume of 2,000,000 m(3), the capital investment required was about US 1,312,895 dollars, or about US 0.84 dollars/tonne of waste. Assuming that the lifespan of the landfill is 20 years, the total cost of operation was about US 11,132,536 dollars or US 7.15 dollars/tonne of waste. The closure cost of the landfill was estimated to be US 1,385,526 dollars or US 0.89 dollars/tonne of waste. Therefore, the total cost required to dispose of a tonne of waste at the semi-aerobic landfill was estimated to be US 8.89 dollars. By considering an average tipping fee of about US 7.89 dollars/tonne of waste in Malaysia in the first year, and an annual increase of 3% to about US 13.84 dollars in year-20, the overall system recorded a positive revenue of US 1,734,749 dollars. This is important information for the effort of privatisation of landfill sites in Malaysia, as well as in other developing countries, in order to secure efficient and effective landfill development and management.
  12. Zainudin MH, Mustapha NA, Maeda T, Ramli N, Sakai K, Hassan M
    Waste Manag, 2020 Apr 01;106:240-249.
    PMID: 32240940 DOI: 10.1016/j.wasman.2020.03.029
    Biochar has proven to be a feasible additive for mitigating nitrogen loss during the composting process. This study aims to evaluate the influence of biochar addition on bacterial community and physicochemical properties changes, including ammonium (NH4+), nitrite (NO2-) and nitrate (NO3-) contents during the composting of poultry manure. The composting was carried out by adding 20% (w/w) of biochar into the mixture of poultry manure and rice straw with a ratio of 2:1, and the same treatment without biochar was prepared as a control. The finished product of control compost recorded the high contents of NO2- and NO3- (366 mg/kg and 600 mg/kg) with reduced the total NH4+ content to 10 mg/kg. Meanwhile, biochar compost recorded a higher amount of total NH4+ content (110 mg/kg) with low NO2- and NO3- (161 mg/kg and 137 mg/kg) content in the final composting material. The principal component analysis showed that the dynamics of dominant genera related to Halomonas, Pusillimonas, and Pseudofulvimonas, all of which were known as nitrifying and denitrifying bacteria, was significantly correlated with the dynamic of NO2- and NO3- content throughout the composting process. The genera related to Pusillimonas, and Pseudofulvimonas appeared as the dominant communities as the NO2- and NO3- increased. In contrast, as the NO2- and NO3- concentration decreased, the Halomonas genus were notably enriched in biochar compost. This study revealed the bacterial community shifts corresponded with the change of physicochemical properties, which provides essential information for a better understanding of monitoring and improving the composting process.
  13. Lasekan A, Abu Bakar F, Hashim D
    Waste Manag, 2013 Mar;33(3):552-65.
    PMID: 22985619 DOI: 10.1016/j.wasman.2012.08.001
    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications.
  14. Sim DHH, Tan IAW, Lim LLP, Lau ET, Hameed BH
    Waste Manag, 2024 Jan 01;173:51-61.
    PMID: 37977096 DOI: 10.1016/j.wasman.2023.11.006
    Nutrient leaching and volatilization cause environmental pollution, thus the pursuit of developing controlled-release fertilizer formulation is necessary. Biochar-based fertilizer exhibits slow-release characteristic, however the nutrient release mechanism needs to be improved. To overcome this limitation, the approach of applying encapsulation technology with biochar-based fertilizer has been implemented in this study. Black peppercorn waste was used to synthesize urea-impregnated biochar (UIB). Central composite design was used to investigate the effects of pyrolysis temperature, residence time and urea:biochar ratio on nitrogen content of UIB. The optimum condition to synthesize UIB was at 400 °C pyrolysis temperature, 120 min residence time and 0.6:1 urea:biochar ratio, which resulted in 16.07% nitrogen content. The tapioca starch/palm oil (PO) biofilm formulated using 8 g of tapioca starch and 0.12 µL of PO was coated on the UIB to produce encapsulated urea-impregnated biochar (EUIB). The UIB and EUIB pellets achieved complete release of nitrogen in water after 90 min and 330 min, respectively. The nutrient release mechanism of UIB and EUIB was best described by the Higuchi model and Korsmeyer-Peppas model, respectively. The improvement of water retention ratio of UIB and EUIB pellets was more significant in sandy-textural soil as compared to clayey-textural soil. The EUIB derived from peppercorn waste has the potential to be utilized as a sustainable controlled-release fertilizer for agriculture.
  15. Md Tahir P, Liew WP, Lee SY, Ang AF, Lee SH, Mohamed R, et al.
    Waste Manag, 2019 Dec;100:128-137.
    PMID: 31536923 DOI: 10.1016/j.wasman.2019.09.002
    Oil palm empty fruit bunch (EFB) is the most significant waste generated from the agricultural industry in Malaysia. Composting is one of the potential approaches to utilize EFB. However, composting of EFB is a time-consuming process, thus impractical for industrial application. The composting process can be shortened by introducing competent fungi into an optimal EFB composting system. This study was conducted to isolate and identify competent fungi that can naturally compost EFB. Samplings were carried out at eight different time points over a 20-weeks experimental period. The physical properties of EFB samples such as pH, residual oil content, and moisture content were measured and the EFB composting process that was indicated by the contents of cellulose, hemicellulose, and lignin were assessed. The fungal growth, distribution, and lignocellulolytic enzyme activities were evaluated. The results indicated that the changes in physical properties of EFB were correlated to the fungal growth. The gradual reduction in moisture content and residual oil, and the increment in pH values in EFB samples throughout the experimental period resulted in reduced fungal growth and diversity. Such phenomenon delayed EFB composting process as revealed by the changes in EFB lignin, hemicellulose, and cellulose contents. The most dominant and resilient fungi (Lichtheimia ramosa and Neurospora crassa) survived up to 16 weeks and were capable of producing various lignocellulolytic enzymes. Further understanding of these factors that would contribute to effective EFB composting could be useful for future industrial applications.
  16. Zhao Y, Han F, Guo L, Zhang J, Zhang H, Abdelaziz IIM, et al.
    Waste Manag, 2021 Dec;136:184-194.
    PMID: 34689097 DOI: 10.1016/j.wasman.2021.10.018
    Postconsumer polyethylene terephthalate (PET) has potential applications in many areas of manufacturing, but contamination by hazardous polyvinyl chloride (PVC) in common waste streams can reduce its recyclable value. Separating collected PET-PVC mixtures before recycling remains very challenging because of the similar physicochemical properties of PET and PVC. Herein, we describe a novel flotation process with corona modification pretreatment to facilitate the separation of PET-PVC mixtures. Through water contact angle, surface free energy, X-ray photoelectron and FT-IR characterization, we found that polar hydroxyl groups can be more easily introduced on the PVC surface than on the PET surface induced by corona modification. This selective wetting can suppress the floatability of PVC, leading to the separation of PET as floating product. A reliable mechanism including two different hydrogen-abstraction pathways was established. Response surface methodology consisting of Plackett-Burman and Box-Behnken designs was adopted for optimization of the combined process, and control parameters were solved based on high-quality prediction models, with fitting from significant variables and interactions. For physical or chemical circulation strategies with PET purity prioritization, the validated purity of the product reached 96.05% at a 626 W corona power, 5.42 m/min passing speed, 24.78 mg/L frother concentration and 286 L/h air flow rate. For the energy recuperation strategy with PET recovery prioritization, the factual recovery reached 98.08% under a 601 W corona power, 6.04 m/min passing speed, 27.55 mg/L frother concentration and 184 L/h air flow rate. The current work provides technological insights into the cleaner disposal of waste plastics.
  17. Salmiaton A, Garforth AA
    Waste Manag, 2011 Jun;31(6):1139-45.
    PMID: 21324661 DOI: 10.1016/j.wasman.2011.01.025
    Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidized bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C(2)-C(7)) remained fairly constant. For the first time, these results indicate that "waste" FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity.
  18. Salmiaton A, Garforth A
    Waste Manag, 2007;27(12):1891-6.
    PMID: 17084608
    Catalytic cracking of high-density polyethylene (HDPE) over fluid catalytic cracking (FCC) catalysts (1:6 ratio) was carried out using a laboratory fluidized bed reactor operating at 450 degrees C. Two fresh and two steam deactivated commercial FCC catalysts with different levels of rare earth oxide (REO) were compared as well as two used FCC catalysts (E-Cats) with different levels of metal poisoning. Also, inert microspheres (MS3) were used as a fluidizing agent to compare with thermal cracking process at BP pilot plant at Grangemouth, Scotland, which used sand as its fluidizing agent. The results of HDPE degradation in terms of yield of volatile hydrocarbon product are fresh FCC catalysts>steamed FCC catalysts approximately used FCC catalysts. The thermal cracking process using MS3 showed that at 450 degrees C, the product distribution gave 46 wt% wax, 14% hydrocarbon gases, 8% gasoline, 0.1% coke and 32% nonvolatile product. In general, the product yields from HDPE cracking showed that the level of metal contamination (nickel and vanadium) did not affect the product stream generated from polymer cracking. This study gives promising results as an alternative technique for the cracking and recycling of polymer waste.
  19. Rada EC, Ragazzi M, Fedrizzi P
    Waste Manag, 2013 Apr;33(4):785-92.
    PMID: 23402896 DOI: 10.1016/j.wasman.2013.01.002
    Municipal solid waste management is a multidisciplinary activity that includes generation, source separation, storage, collection, transfer and transport, processing and recovery, and, last but not least, disposal. The optimization of waste collection, through source separation, is compulsory where a landfill based management must be overcome. In this paper, a few aspects related to the implementation of a Web-GIS based system are analyzed. This approach is critically analyzed referring to the experience of two Italian case studies and two additional extra-European case studies. The first case is one of the best examples of selective collection optimization in Italy. The obtained efficiency is very high: 80% of waste is source separated for recycling purposes. In the second reference case, the local administration is going to be faced with the optimization of waste collection through Web-GIS oriented technologies for the first time. The starting scenario is far from an optimized management of municipal solid waste. The last two case studies concern pilot experiences in China and Malaysia. Each step of the Web-GIS oriented strategy is comparatively discussed referring to typical scenarios of developed and transient economies. The main result is that transient economies are ready to move toward Web oriented tools for MSW management, but this opportunity is not yet well exploited in the sector.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links