Displaying publications 41 - 60 of 569 in total

Abstract:
Sort:
  1. Yaacob NS, Nasir R, Norazmi MN
    Asian Pac J Cancer Prev, 2013;14(11):6761-7.
    PMID: 24377602
    The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ), is expressed in various cancer cells including breast, prostate, colorectal and cervical examples. An endogenous ligand of PPARγ, 15-deoxy-Δ12,14 prostaglandin J2 (PGJ2), is emerging as a potent anticancer agent but the exact mechanism has not been fully elucidated, especially in breast cancer. The present study compared the anticancer effects of PGJ2 on estrogen receptor alpha (ERα)-positive (MCF-7) and ERα-negative (MDA-MB-231) human breast cancer cells. Based on the reported signalling cross-talk between PPARγ and ERα, the effect of the ERα ligand, 17β-estradiol (E2) on the anticancer activities of PGJ2 in both types of cells was also explored. Here we report that PGJ2 inhibited proliferation of both MCF-7 and MDA-MB-231 cells by inducing apoptotic cell death with active involvement of mitochondria. The presence of E2 potentiated PGJ2-induced apoptosis in MCF-7, but not in MDA-MB-231 cells. The PPARγ antagonist, GW9662, failed to block PGJ2-induced activities but potentiated its effects in MCF-7 cells, instead. Interestingly, GW9662 also proved capable of inducing apoptotic cell death. It can be concluded that E2 enhances PPARγ-independent anticancer effects of PGJ2 in the presence of its receptor.
    Matched MeSH terms: Apoptosis/drug effects*
  2. Alabsi AM, Ali R, Ali AM, Harun H, Al-Dubai SA, Ganasegeran K, et al.
    Asian Pac J Cancer Prev, 2013;14(11):6273-80.
    PMID: 24377517
    Goniothalamin, a natural compound extracted from Goniothalamus sp. belonging to the Annonacae family, possesses anticancer properties towards several tumor cell lines. This study focused on apoptosis induction by goniothalamin (GTN) in the Hela cervical cancer cell line. Cell growth inhibition was measured by MTT assay and the IC50 value of goniothalamin was 3.2 ± 0.72 μg/ml. Morphological changes and biochemical processes associated with apoptosis were evident on phase contrast microscopy and fluorescence microscopy. DNA fragmentation, DNA damage, caspase-9 activation and a large increase in the sub-G1 and S cell cycle phases confirmed the occurrence of apoptosis in a time-dependent manner. It could be concluded that goniothalamin show a promising cytotoxicity effect against cervical cancer cells (Hela) and the cell death mode induced by goniothalamin was apoptosis.
    Matched MeSH terms: Apoptosis/drug effects*
  3. Asmaa MJ, Al-Jamal HA, Ang CY, Asan JM, Seeni A, Johan MF
    Asian Pac J Cancer Prev, 2014;15(1):475-81.
    PMID: 24528077
    BACKGROUND: Pereskia sacharosa is a genus of cacti widely used in folk medicine for cancer-related treatment. Anti-proliferative effects have been studied in recent years against colon, breast, cervical and lung cancer cell lines, with promising results. We here extended study of anti-proliferative effects to a blood malignancy, leukemia.

    MATERIALS AND METHODS: Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. IC50 concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting.

    RESULTS: P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells.

    CONCLUSIONS: These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.

    Matched MeSH terms: Apoptosis/drug effects*
  4. Saad N, Esa NM, Ithnin H
    Asian Pac J Cancer Prev, 2013;14(5):3093-9.
    PMID: 23803085
    BACKGROUND: Phytic acid (PA) is a polyphosphorylated carbohydrate that can be found in high amounts in most cereals, legumes, nut oil, seeds and soy beans. It has been suggested to play a significant role in inhibition of colorectal cancer. This study was conducted to investigate expression changes of β-catenin and cyclooxygenase-2 (COX-2) and cell proliferation in the adenoma-carcinoma sequence after treatment with rice bran PA by immunocytochemistry.

    MATERIALS AND METHODS: Seventy-two male Sprague-Dawley rats were divided into 6 equal groups with 12 rats in each group. For cancer induction two intraperitoneal injections of azoxymethane (AOM) were given at 15 mg/kg bodyweight over a 2-weeks period. During the post initiation phase, two different concentrations of PA, 0.2% (w/v) and 0.5% (w/v) were administered in the diet.

    RESULTS: Results of β-catenin, COX-2 expressions and cell proliferation of Ki-67 showed a significant contribution in colonic cancer progression. For β-catenin and COX-2 expression, there was a significant difference between groups at p<0.05. With Ki-67, there was a statistically significant lowering the proliferating index as compared to AOM alone (p<0.05). A significant positive correlation (p=0.01) was noted between COX-2 expression and proliferation. Total β-catenin also demonstrated a significant positive linear relationship with total COX-2 (p=0.044).

    CONCLUSIONS: This study indicated potential value of PA extracted from rice bran in reducing colonic cancer risk in rats.

    Matched MeSH terms: Apoptosis/drug effects
  5. Kadir EA, Sulaiman SA, Yahya NK, Othman NH
    Asian Pac J Cancer Prev, 2013;14(4):2249-54.
    PMID: 23725121
    The study was conducted to determine the effect of Malaysian jungle Tualang Honey (TH) on development of breast cancer induced by the carcinogen 7,12-dimethylbenz(α)anthracene (DMBA) in rats. Forty nulliparous female Sprague-Dawley rats were given 80 mg/kg DMBA then randomly divided into four groups: Group 1 served as a Control while Groups 2, 3 and 4 received 0.2, 1.0 or 2.0 g/kg bodyweight/day of TH, respectively, for 150 days. Results showed that breast cancers in the TH-treated groups had slower size increment and smaller mean tumor size (≤ 2 cm3) compared to Controls (≤ 8 cm3). The number of cancers developing in TH-treated groups was also significantly fewer (P<0.05). Histological grading showed majority of TH-treated group cancers to be of grade 1 and 2 compared to grade 3 in controls. There was an increasing trend of apoptotic index (AI) seen in TH-treated groups with increasing dosage of Tualang Honey, however, the mean AI values of all TH-treated groups were not significantly different from the Control value (p>0.05). In conclusion, Tualang Honey exerted positive modulation effects on DMBA-induced breast cancers in rats in this preliminary study.
    Matched MeSH terms: Apoptosis/drug effects*
  6. Wen CT, Hussein SZ, Abdullah S, Karim NA, Makpol S, Mohd Yusof YA
    Asian Pac J Cancer Prev, 2012;13(4):1605-10.
    PMID: 22799375
    Gelam and Nenas monofloral honeys were investigated in this study for their chemopreventive effects against HT 29 colon cancer cells. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolim) assays showed more effective inhibition of colon cancer cells proliferation by Gelam honey with IC₅₀ values of 39.0 mg/ml and 85.5 mg/ml respectively after 24 hours of treatment. Alkali comet assays revealed both honeys increased DNA damage significantly in a dose dependent manner. In addition, annexin V-FITC/PI flow cytometry demonstrated that at IC₅₀ concentrations and above, both Gelam and Nenas honeys induced apoptosis significantlyat values higher than for necrosis (p<0.05). Measurement of prostaglandin E₂ (PGE₂) confirmed that Gelam and Nenas honeys reduced its production in H₂O₂ inflammation-induced colon cancer cells. In conclusion, our study indicated and confirmed that both Gelam and Nenas honeys are capable of suppressing the growth of HT 29 colon cancer cells by inducing apoptosis and suppressing inflammation.
    Matched MeSH terms: Apoptosis/drug effects
  7. Zulkepli NA, Rou KV, Sulaiman WN, Salhin A, Saad B, Seeni A
    Asian Pac J Cancer Prev, 2011;12(1):259-63.
    PMID: 21517268
    One of the main aims of cancer chemopreventive studies is to identify ideal apoptotic inducers, especially examples which can induce early apoptotic activity. The present investigation focused on chemopreventive effects of a hydrazone derivative using an in vitro model with tongue cancer cells. Alteration in cell morphology was ascertained, along with stage in the cell cycle and proliferation, while living-dead status of the cells was confirmed under a confocal microscope. In addition, cytotoxicity test was performed using normal mouse skin fibroblast cells. The results showed that the compound inhibited the growth of tongue cancer cells with an inhibitory concentration (IC₅₀) of 0.01 mg/ml in a dose and time-dependent manner, with a two-fold increase in early apoptotic activity and G0G1 phase cell cycle arrest compared to untreated cells. Exposure to the compound also resulted in alterations of cell morphology including vacuolization and cellular shrinkage. Confocal microscope analysis using calcein and ethidium staining confirmed that the compound caused cell death, whereas no cytotoxic effects on normal mouse skin fibroblast cells were observed. In conclusion, the findings in this study suggested that the hydrazone derivative acts as an apoptotic inducer with anti-proliferative chemopreventive activity in tongue cancer cells.
    Matched MeSH terms: Apoptosis/drug effects*
  8. Alabsi AM, Ali R, Ali AM, Al-Dubai SA, Harun H, Abu Kasim NH, et al.
    Asian Pac J Cancer Prev, 2012;13(10):5131-6.
    PMID: 23244123
    Cancer is one of the major health problems worldwide and its current treatments have a number of undesired adverse side effects. Natural compounds may reduce these. Currently, a few plant products are being used to treat cancer. In this study, goniothalamin, a natural occurring styryl-lactone extracted from Goniothalamus macrophyllus, was investigated for cytotoxic properties against cervical cancer (HeLa), breast carcinoma (MCF-7) and colon cancer (HT29) cells as well as normal mouse fibroblast (3T3) using MTT assay. Fluorescence microscopy showed that GTN is able to induce apoptosis in HeLa cells in a time dependent manner. Flow cytometry further revealed HeLa cells treated with GTN to be arrested in the S phase. Phosphatidyl serine properties present during apoptosis enable early detection of the apoptosis in the cells. Using annexin V/PI double staining it could be shown that GTN induces early apoptosis on HeLa cells after 24, 48 and 72 h. It could be concluded that goniothalamin showing a promising cytotoxicity effect against several cancer cell lines including cervical cancer cells (HeLa) with apoptosis as the mode of cell death induced on HeLa cells by Goniothalamin was.
    Matched MeSH terms: Apoptosis/drug effects*
  9. Hussin F, Eshkoor SA, Rahmat A, Othman F, Akim A, Eshak Z
    Asian Pac J Cancer Prev, 2015;16(14):6047-53.
    PMID: 26320494
    BACKGROUND: Hepatocellular carcinoma is one of the most common cancers worldwide. Its prevalence is increasing in many countries. Plant products can be used to protect against cancer due to natural anticancer and chemopreventive constituents. Strobilanthes crispus is one of plants with potential chemopreventive ability.

    OBJECTIVE: This study aimed to evaluate the anticancer effects of Strobilanthes crispus juice on hepatocellular carcinoma cells.

    MATERIALS AND METHODS: MTT assays, flow cytometry, comet assays and the reverse transcription- polymerase chain reaction (RT-PCR) were used to determine the effects of juice on DNA damage and cancer cell numbers.

    RESULTS: This juice induced apoptosis after exposure of the HepG2 cell line for 72 h. High percentages of apoptotic cell death and DNA damage were seen at the juice concentrations above 0.1%. It was found that the juice was not toxic for normal cells. In addition, juice exposure increased the expression level of c-myc gene and reduced the expression level of c-fos and c-erbB2 genes in HepG2 cells. The cytotoxic effects of juice on abnormal cells were in dose dependent.

    CONCLUSIONS: It was concluded that the Strobilanthes crispus juice may have chemopreventive effects on hepatocellular carcinoma cells.

    Matched MeSH terms: Apoptosis/drug effects*
  10. Andas AR, Abdul AB, Rahman HS, Sukari MA, Abdelwahab SI, Samad NA, et al.
    Asian Pac J Cancer Prev, 2015;16(10):4311-6.
    PMID: 26028091
    Hepatocellular carcinoma (HCC) is a primary liver cancer with high global incidence and mortality rates. Current candidate drugs to treat HCC remain lacking and those in use possess undesirable side effects. In this investigation, the antiproliferative effects of dentatin (DTN), a natural coumarin, were evaluated on HepG2 cells and DTN's probable preliminary molecular mechanisms in apoptosis induction were further investigated. DTN significantly (p<0.05) suppressed proliferation of HepG2 cells with an IC50 value of 12.0 μg/mL, without affecting human normal liver cells, WRL-68 (IC50>50 μg/mL) causing G0/G1 cell cycle arrest via apoptosis induction. Caspase colorimetric assays showed markedly increased levels of caspase-3 and caspase-9 activities throughout the treatment period. Western blotting of treated HepG2 cells revealed inhibition of NF-κB that triggers the mitochondrial-mediated apoptotic signaling pathway by up-regulating cytoplasmic cytochrome c and Bax, and down-regulating Bcl-2 and Bcl-xL. The current findings suggest DTN has the potential to be developed further as an anticancer compound targeting human HCC.
    Matched MeSH terms: Apoptosis/drug effects*
  11. Sul ‘ain MD, Zakaria F, Johan MF
    Asian Pac J Cancer Prev, 2019 Jan 25;20(1):185-192.
    PMID: 30678430
    Background: Cervical cancer is one of the most commonly diagnosed neoplasms and a leading cause of cancer
    death among females worldwide. Limitations with conventional medical treatments have driven researchers to
    search for alternative approaches using natural products. This study aimed to detemine potential anti-proliferative
    effects of methanol and water extracts of Pyrrosia piloselloides (P. piloselloides) on the HeLa cell line. Methods:
    3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to determine IC50
    concentrations and apoptosis analysis was by flow cytometry. To identify chemical compounds in the extracts, gas
    chromatography-mass spectrometry (GC-MS) was employed. Results: P. piloselloides methanol extracts (PPME) showed
    antiproliferative effects on HeL awith an IC50 of 16.25μg/mL while the P. piloselloides water extract (PPWE) was without
    influence. Neither extract showed any significant effects on apoptosis. GC-MS analysis, revealed 5-hydroxymethylfurfural
    (23.1%), allopurinol (8.66%) and 3, 5-dihydroxy-6-methyl-2,3-dihydropyran-4-one (7.41%) as major components in
    the PPME, while sulfolan-3-ol (10.1%), linoleic acid (9.06%) and β-sitosterol acetate (7.98%) predominated in the
    PPWE case. Conclusion: This first study of P. piloselloides showed PPME to exert potent anti-proliferative effect on
    HeLa cell lines. Further research now needs to be performed to establish the mechanisms of inhibition.
    Matched MeSH terms: Apoptosis/drug effects
  12. Haron NH, Md Toha Z, Abas R, Hamdan MR, Azman N, Khairuddean M, et al.
    Asian Pac J Cancer Prev, 2019 Feb 26;20(2):601-609.
    PMID: 30806066
    Objective: This study was conducted to investigate the antiproliferative activity of extracts of Clinacanthus nutans
    leaves against human cervical cancer (HeLa) cells. Methods: C. nutans leaves were subjected to extraction using 80%
    methanol or water. The methanol extract was further extracted to obtain hexane, dichloromethane (DCM), and aqueous
    fractions. The antiproliferative activity of the extracts against HeLa cells was determined. The most cytotoxic extract
    was furthered analyzed by apoptosis and cell cycle assays, and the phytochemical constituents were screened by gas
    chromatography-mass spectrometry (GC-MS). Results: All of the extracts were antiproliferative against HeLa cells, and
    the DCM fraction had the lowest IC50 value of 70 μg/mL at 48 h. Microscopic studies showed that HeLa cells exposed
    to the DCM fraction exhibited marked morphological features of apoptosis. The flow cytometry study also confirmed
    that the DCM fraction induced apoptosis in HeLa cells, with cell cycle arrest at the S phase. GC-MS analysis revealed
    the presence of at least 28 compounds in the DCM fraction, most of which were fatty acids. Conclusion: The DCM
    fraction obtained using the extraction method described herein had a lower IC50 value than those reported in previous
    studies that characterized the anticancer activity of C. nutans against HeLa cells.
    Matched MeSH terms: Apoptosis/drug effects*
  13. Al-Tayar BA, Ahmad A, Yusoff ME, Abdullah SF, Mohamad NK, Md Hashim SN, et al.
    Asian Pac J Cancer Prev, 2020 Apr 01;21(4):1005-1009.
    PMID: 32334462 DOI: 10.31557/APJCP.2020.21.4.1005
    BACKGROUND: Betel quid chewing is more common among the older generation in rural areas of Malaysia. Oral cancer in Asia has been associated with the habit of chewing betel quid and areca nut.

    OBJECTIVE:   This study aims to investigate the cytotoxic effects of betel quid and areca nut extracts on the fibroblast (L929), mouth-ordinary-epithelium 1 (MOE1) and oral squamous cell carcinoma (HSC-2) cell lines.

    METHODS: L929, MOE1 and HSC-2 cells were treated with 0.1, 0.2 and 0.4 g/ml of betel quid and areca nut extracts for 24, 48 and 72 h. MTT assay was performed to assess the cell viability.

    RESULTS: Both extracts, regardless of concentration, significantly reduced the cell viability of L929 compared with the control (P<0.05). Cell viability of MOE1 was significantly enhanced by all betel quid concentrations compared with the control (P<0.05). By contrast, 0.4 g/ml of areca nut extract significantly reduced the cell viability of MOE1 at 48 and 72 h of incubation. Cell viability of HSC-2 was significantly lowered by all areca nut extracts, but 0.4 g/ml of betel quid significantly increased the cell viability of HSC-2 (P<0.05).

    CONCLUSION: Areca nut extract is cytotoxic to L929 and HSC-2, whereas the lower concentrations of areca nut extract significantly increased the cell viability of MOE1 compared to the higher concentration and control group. Although betel quid extract is cytotoxic to L929, the same effect is not observed in MOE1 and HSC-2 cell lines. Further investigations are needed to clarify the mechanism of action.
    .

    Matched MeSH terms: Apoptosis/drug effects*
  14. Waziri PM, Abdullah R, Rosli R, Omar AR, Abdul AB, Kassim NK, et al.
    Asian Pac J Cancer Prev, 2018 Apr 25;19(4):917-922.
    PMID: 29693341
    Clausena excavata Burm f. is used by traditional healers to treat cancer patients in South East Asia. The use of the
    plant and its compounds is based on Asian folklore with little or no scientific evidence supporting the therapeutic efficacy
    The current study aimed to determine the effect of pure clausenidin isolated from C. excavata on caspase-8-induced cell
    death as well as angiogenesis in the HepG2 hepatocellular carcinoma cell line. Caspase-8 and extrinsic death receptor
    protein expression was determined using spectrophotometry and protein profile arrays, respectively. Ultrastructural
    analysis of clausenidin-treated cells was conducted using transmission electron microscopy. In addition, anti-angiogenic
    effects of clausenidin were investigated by Western blot analysis. Clausenidin significantly (p<0.05) increased the
    activity of caspase-8 and expression of protein components of the death inducing signaling complex (DISC) in HepG2
    cells. Ultrastructural analysis of the clausenidin-treated HepG2 cells revealed morphological abnormalities typical of
    apoptosis. Furthermore, clausenidin significantly (p<0.05) decreased the expression of vascular endothelial growth
    factor (VEGF). Therefore, clausenidin is a potential anti-angiogenic agent which may induce apoptosis of hepatocellular
    carcinoma cells.
    Matched MeSH terms: Apoptosis/drug effects*
  15. Almajali B, Al-Jamal HAN, Wan Taib WR, Ismail I, Johan MF, Doolaanea AA, et al.
    Asian Pac J Cancer Prev, 2021 Mar 01;22(3):879-885.
    PMID: 33773553 DOI: 10.31557/APJCP.2021.22.3.879
    OBJECTIVE: The natural compound, thymoquinone (TQ) has demonstrated potential anticancer properties in inhibiting cell proliferation and promoting apoptosis in myeloid leukemia cells, breast cancer cells, and others. However, the effect mechanism of TQ on AML cells still not fully understood. In this study, the authors examined the effects of TQ on the expression of JAK/STAT-negative regulator genes SOCS-1, SOCS-3, and SHP-1, and their consequences on cell proliferation and apoptosis in HL60 leukemia cells.

    METHODS: MTT and trypan blue exclusion tests were conducted to determine the 50% inhibitory concentration (IC50) and cell proliferation. FITC Annexin and Guava® reagent were used to study the cell apoptosis and examine the cell cycle phases, respectively. The expression of JAK/STAT-negative regulator genes, SOCS-1, SOCS-3, and SHP-1, was investigated using reverse transcriptase- quantitative PCR (RT-qPCR).

    RESULTS: TQ demonstrated a potential inhibition of HL60 cell proliferation and a significant increase in apoptotic cells in dose and time-dependent manner. TQ significantly induced cycle arrest at G0-G1 phase (P < 0.001) and enhanced the re-expression of JAK/STAT-negative regulator genes.

    CONCLUSION: TQ potentially inhibited HL60 cell proliferation and significantly increased apoptosis with re-expression of JAK/STAT-negative regulator genes suggesting that TQ could be a new therapeutic candidate for leukemia therapy.
    .

    Matched MeSH terms: Apoptosis/drug effects*
  16. Al-Rawashde FA, Wan Taib WR, Ismail I, Johan MF, Al-Wajeeh AS, Al-Jamal HAN
    Asian Pac J Cancer Prev, 2021 Dec 01;22(12):3959-3965.
    PMID: 34967577 DOI: 10.31557/APJCP.2021.22.12.3959
    OBJECTIVE: BCR ABL oncogene encodes the BCR-ABL chimeric protein, which is a constitutively activated non-receptor tyrosine kinase. The BCR-ABL oncoprotein is a key molecular basis for the pathogenesis of chronic myeloid leukemia (CML) via activation of several downstream signaling pathways including JAK/STAT pathway. Development of leukemia involves constitutive activation of signaling molecules including, JAK2, STAT3, STAT5A and STAT5B. Thymoquinone (TQ) is a bioactive constituent of Nigella sativa that has shown anticancer properties in various cancers. The present study aimed to evaluate the effect of TQ on the expression of BCR ABL, JAK2, STAT3, STAT5A and STAT5B genes and their consequences on the cell proliferation and apoptosis in K562 CML cells.

    METHODS: BCR-ABL positive K562 CML cells were treated with TQ. Cytotoxicity was determined by Trypan blue exclusion assay. Apoptosis assay was performed by annexin V-FITC/PI staining assay and analyzed by flow cytometry. Transcription levels of BCR ABL, JAK2, STAT3, STAT5A and STAT5B genes were evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Protein levels of JAK2 and STAT5 were determined by Jess Assay analysis.

    RESULTS: TQ markedly decreased the cell proliferation and induced apoptosis in K562 cells (P < 0.001) in a concentration dependent manner. TQ caused a significant decrease in the transcriptional levels of BCR ABL, JAK2, STAT3, STAT5A and STAT5B genes (P < 0.001). TQ induced a significant decrease in JAK2 and STAT5 protein levels (P < 0.001).

    CONCLUSION: our results indicated that TQ inhibited cell growth of K562 cells via downregulation of BCR ABL/ JAK2/STAT3 and STAT5 signaling and reducing JAK2 and STAT5 protein levels.

    Matched MeSH terms: Apoptosis/drug effects
  17. Shaghayegh G, Alabsi AM, Ali-Saeed R, Ali AM, Vincent-Chong VK, Ismail NH, et al.
    Asian Pac J Cancer Prev, 2017 Dec 29;18(12):3333-3341.
    PMID: 29286228
    Cancer is one of the most common causes of death in the developed world, with one-third of people diagnosed with
    cancer during their lifetime. Oral cancer commonly occurs involving the buccal mucosa (cheeks), tongue, floor of the
    mouth and lip. It is one of the most devastating and disfiguring of malignancies. Morinda citrifolia L., commonly known
    as ‘noni’, belongs to the Rubiaceae family. It is native to the Pacific islands, Hawaii, Caribbean, Asia and Australia.
    The plant displays broad curative effects in pharmacological studies. Damnacanthal (DAM) and Nordamnacanthal
    (NDAM), anthraquinone compounds isolated from the roots of Morinda citrifolia L., has been used for the treatment
    of several chronic diseases including cancer. The objectives of this study were to evaluate cytotoxicity, morphological
    changes, cell death mode (apoptosis/necrosis), and cell migration induced by DAM and NDAM on the most common
    type of oral cancer, oral squamous cell carcinoma (OSCC)cells. Anti-proliferative effects of these compounds against
    OSCC cell lines were determined by MTT assay. The mode of cell death was analysed by phase contrast and fluorescent
    microscopy as well as flow cytometry. In addition, cell migration was assessed. The results showed that DAM and
    NDAM exerted cytotoxicity against OSCC cells with IC50 values of 1.9 to >30 μg/ml after 72 h treatment. Maximum
    growth inhibition among the tested cell lines for both compounds was observed in H400 cells, and thus it was selected
    for further study. The study demonstrated inhibition of H400 OSCC cell proliferation, marked apoptotic morphological
    changes, induction of early apoptosis, and inhibition of cell migration by DAM and NDAM. Therefore, this information
    suggests that these compounds from noni have potential for used as anti tumor agents for oral cancer therapy.
    Matched MeSH terms: Apoptosis/drug effects*
  18. Chaudhry GE, Jan R, Naveed Zafar M, Mohammad H, Muhammad TST
    Asian Pac J Cancer Prev, 2019 Dec 01;20(12):3555-3562.
    PMID: 31870094 DOI: 10.31557/APJCP.2019.20.12.3555
    OBJECTIVE: Breast cancer is the most frequently diagnosed cancer worldwide. The main objective of the present study was to evaluate the cytotoxic effects and mechanism of cell death induced by the extract and fractions of Vitex rotundifolia (leaves) in breast cancer cell line, T-47D.

    METHODS: The cytotoxicity activity was measured using MTS assay. The mode of cell death was analysed by early (phosphatidylserine externalization) and late apoptosis (DNA fragmentation). The caspases 8, 9, 3/7 and apoptotic proteins bax, bcl-2 study were done by western blot and ELISA method.

    RESULTS: The methanol extract was found to inhibit 50% growth of T-47D cells at the concentration of 79.43µg/ml respectively after 72hr. From seven fractions, fraction F1, F2 and F3 produced cytotoxicity effects in T-47D cell line with IC50 (72hr) < 30µg/ml. The results obtained by Annexin V/PI apoptosis detection assay and TUNEL assay suggest that active fractions of  Vitex rotundifolia induced early and late apoptosis (DNA fragmentation) in T-47D cell line. Moreover, western blot analysis and Caspase GloTM luminescent assay demonstrated that fractions F2 and F3 triggered apoptotic cell death via activation of caspases -8, -9 and -3/7 and up-regulation of  Bax and down-regulation of Bcl-2 protein.  Furthermore, chemical profiling confirms the presence of potential metabolites (vitexicarpin) in fractions of Vitex rotundifolia.

    CONCLUSION: Thus, the present study suggests the remarkable potential of active metabolites in fractions of Vitex rotundifolia as future cancer therapeutic agent for the treatment of breast cancer.
    .

    Matched MeSH terms: Apoptosis/drug effects*
  19. Arumugam A, Abdull Razis AF
    Asian Pac J Cancer Prev, 2018 Jun 25;19(6):1439-1448.
    PMID: 29936713
    Cruciferous vegetables are a rich source of glucosinolates that have established anti-carcinogenic activity. Naturally-occurring glucosinolates and their derivative isothiocyanates (ITCs), generated as a result of their enzymatic degradation catalysed by myrosinase, have been linked to low cancer incidence in epidemiological studies, and in animal models isothiocyanates suppressed chemically-induced tumorigenesis. The prospective effect of isothiocyanates as anti-carcinogenic agent has been much explored as cytotoxic against wide array of cancer cell lines and being explored for the development of new anticancer drugs. However, the mechanisms of isothiocyanates in inducing apoptosis against tumor cell lines are still largely disregarded. A number of mechanisms are believed to be involved in the glucosinolate-induced suppression of carcinogenesis, including the induction of apoptosis, biotransformation of xenobiotic metabolism, oxidative stress, alteration of caspase activity, angiogenesis, histone deacytylation and cell cycle arrest. The molecular mechanisms through which isothiocyanates stimulate apoptosis in cancer cell lines have not so far been clearly defined. This review summarizes the underlying mechanisms through which isothiocyanates modify the apoptotic pathway leading to cell death.
    Matched MeSH terms: Apoptosis/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links