With the regulatory approval of Provenge and Talimogene laherparepvec (T-VEC) for the treatment of metastatic prostate cancer and advanced melanoma respectively, and other promising clinical trials outcomes, cancer vaccine is gaining prominence as a cancer therapeutic agent. Cancer vaccine works to induce T cell priming, expansion, and infiltration resulting in antigen-specific cytotoxicity. Such an approach that can drive cytotoxicity within the tumor could complement the success of checkpoint inhibitors as tumors shown to have high immune cell infiltration are those that would respond well to these antibodies. With the advancements in cancer vaccine, methods to monitor and understand how cancer vaccines modify the immune milieu is under rapid development. This includes using ELISpot and intracellular staining to detect cytokine secretion by activated T cells; tetramer and CyTOF to quantitate the level of antigen specific T cells; proliferation and cell killing assay to detect the expansion of T cell and specific killing activity. More recently, T cell profiling has provided unprecedented detail on immune cell subsets and providing clues to the mechanism involved in immune activation. Here, we reviewed cancer vaccines currently in clinical trials and highlight available techniques in monitoring the clinical response in patients.
Mining of plant-derived antimicrobials is the major focus at current to counter antibiotic resistance. This study was conducted to characterize the antimicrobial activity and mode of action of linalyl anthranilate (LNA) against carbapenemase-producing Klebsiella pneumoniae (KPC-KP). LNA alone exhibited bactericidal activity at 2.5% (V/V), and in combination with meropenem (MPM) at 1.25% (V/V). Comparative proteomic analysis showed a significant reduction in the number of cytoplasmic and membrane proteins, indicating membrane damage in LNA-treated KPC-KP cells. Up-regulation of oxidative stress regulator proteins and down-regulation of oxidative stress-sensitive proteins indicated oxidative stress. Zeta potential measurement and outer membrane permeability assay revealed that LNA increases both bacterial surface charge and membrane permeability. Ethidium bromide influx/efflux assay showed increased uptake of ethidium bromide in LNA-treated cells, inferring membrane damage. Furthermore, intracellular leakage of nucleic acid and proteins was detected upon LNA treatment. Scanning and transmission electron microscopies again revealed the breakage of bacterial membrane and loss of intracellular materials. LNA was found to induce oxidative stress by generating reactive oxygen species (ROS) that initiate lipid peroxidation and damage the bacterial membrane. In conclusion, LNA generates ROS, initiates lipid peroxidation, and damages the bacterial membrane, resulting in intracellular leakage and eventually killing the KPC-KP cells.
Hand hygiene is the topmost crucial procedure to prevent hospital-acquired infections. Choosing an effective hand disinfectant is necessary in enforcing good hand hygiene practice especially in hospital settings. The aim of the study was to investigate the efficacy of Aaride AGT-1 as a hand disinfectant for the inhibition of pathogenic microorganisms' transmission among both patients and personnel in the health care system compared to other commercially available disinfectants. In the present study, a new hand disinfectant Aaride AGT-1 was tested against several bacterial and viral pathogens to evaluate its antimicrobial activity profile. The results revealed that Aaride AGT-1 displayed the highest antibacterial activity against five pathogenic bacteria including MRSA when compared to other commercially available hand sanitizers. Aaride AGT-1 showed the lowest percentage needed to inhibit the growth of bacterial pathogens. In addition, results obtained from time killing assay revealed that Aaride AGT-1 demonstrated the best killing kinetics, by eradicating the bacterial cells rapidly within 0.5 min with 6 log reduction (>99.99% killing). Also, Aaride AGT1 was able to reduce 100% plaque formed by three viruses namely HSV-1, HSV-2 and EV-71. In conclusion, Aaride AGT-1 is capable of killing wide-spectrum of pathogens including bacteria and viruses compared to other common disinfectants used in hospital settings. Aaride AGT-1's ability to kill both bacteria and viruses contributes as valuable addition to the hand disinfection portfolio.
The increase in prevalence of antimicrobial-resistant bacteria (ARB) is currently a serious threat, thus there is a need for new antimicrobial compounds to combat infections caused by these ARB. An antimicrobial-producing bacterium, Burkholderia paludis was recently isolated and was able to produce a type of siderophore with antimicrobial properties, later identified as pyochelin. The chelating ability of pyochelin has been well-characterized but not for its antimicrobial characteristics. It was found that pyochelin had MIC values (MBC values) of 3.13 µg/mL (6.26 µg/mL) and 6.26 µg/mL (25.00 µg/mL) against three Enterococcus strains and four Staphylococcus strains. Pyochelin was able to inhibit E. faecalis ATCC 700802 (a vancomycin-resistant strain) in a time and dose dependent manner via killing kinetics assay. It was demonstrated that pyochelin enhanced the production of intracellular reactive oxygen species (ROS) over time, which subsequently caused a significant increase in malondialdehyde (MDA) production (a marker for lipid peroxidation) and ultimately led to cell death by disrupting the integrity of the bacterial membrane (validated via BacLight assay). This study has revealed the mechanism of action of pyochelin as an antimicrobial agent for the first time and has shown that pyochelin might be able to combat infections caused by E. faecalis in the future.
Culture-bound syndromes have been described worldwide in many individuals and, for certain syndromes, in epidemic proportion, yet these disorders have been classified as rare and exotic conditions warranting minimal attention. Development of the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders and the tenth edition of the International Classification of Diseases offers an opportunity for providing a more sophisticated classification of these phenomena. The authors examine amok, a syndrome first described in Malaysia that consists of homicidal frenzy preceded by a state of brooding and ending with somnolence and amnesia. They discuss the concept of and criteria for a culture-specific disorder and propose that amok be classified as a culture-specific explosive behavioral disorder in DSM-IV.
The main aim of this study was to determine the causes and epidemiological aspects of paediatric death. Data was collected on 143 cases of paediatric death from a total of 2,895 autopsies performed in University Malaya Medical Centre (UMMC), Kuala Lumpur, over a five-year period from 2000 to 2004. There were 78 males and 65 females. The largest number of cases (32.9%) were stillborn. The highest proportion of cases (30.1%) were Chinese. The majority of cases of paediatric death were non-traumatic (74.8%) of which intrauterine death (IUD) was the most common (32.9%). Amongst the traumatic deaths (25.2%), accidental injury (23.8%) was observed in the majority of cases.
The clinical efficacy of topical administration of standardised fermented papaya gel (SFPG), known to have antioxidant and anti-inflammatory properties, versus conventional therapy was evaluated in a group of 84 patients with moderate-to-severe periodontitis, randomly assigned to control group (n = 45) undergoing traditional pharmacologic/surgical protocols or to experimental group (n = 39), additionally treated with intragingival pocket SFPG (7 g) applications (15 min daily for 10 days). Patients undergoing SFPG treatment showed significant (P < 0.05), durable improvement of three major clinical indices of disease severity: reduced bleeding (day 7), plaque and gingival conditions (day 14), and consistent gingival pocket depth reduction (day 45). Proinflammatory nitric oxide metabolites reached normal values in plasma (day 14) and gingival crevicular fluid (GCF) at day 45 with SFPG applications compared to controls that did not reach normalisation. Levels of highly increased proinflammatory (IL-1B, IL-6) and suppressed anti-inflammatory (IL-10) cytokines normalised in the SFPG group by days 14 (plasma) and 45 (GCF), but never in the control group. Although not acting directly as antibiotic, SFPG acted in synergy with human granulocytes blocking adaptive catalase induction in S. aureus in response to granulocyte-derived oxidative stress, thus enhancing intracellular bacterial killing.