Displaying publications 61 - 63 of 63 in total

Abstract:
Sort:
  1. Golestan Hashemi FS, Rafii MY, Razi Ismail M, Mohamed MT, Rahim HA, Latif MA, et al.
    Plant Biol (Stuttg), 2015 Sep;17(5):953-61.
    PMID: 25865409 DOI: 10.1111/plb.12335
    Developing fragrant rice through marker-assisted/aided selection (MAS) is an economical and profitable approach worldwide for the enrichment of an elite genetic background with a pleasant aroma. The PCR-based DNA markers that distinguish the alleles of major fragrance genes in rice have been synthesised to develop rice scent biofortification through MAS. Thus, the present study examined the aroma biofortification potential of these co-dominant markers in a germplasm panel of 189 F2 progeny developed from crosses between a non-aromatic variety (MR84) and a highly aromatic but low-yielding variety (MRQ74) to determine the most influential diagnostic markers for fragrance biofortification. The SSRs and functional DNA markers RM5633 (on chromosome 4), RM515, RM223, L06, NKSbad2, FMbadh2-E7, BADEX7-5, Aro7 and SCU015RM (on chromosome 8) were highly associated with the 2AP (2-acetyl-1-pyrroline) content across the population. The alleles traced via these markers were also in high linkage disequilibrium (R(2) > 0.70) and explained approximately 12.1, 27.05, 27.05, 27.05, 25.42, 25.42, 20.53, 20.43 and 20.18% of the total phenotypic variation observed for these biomarkers, respectively. F2 plants harbouring the favourable alleles of these effective markers produced higher levels of fragrance. Hence, these rice plants can be used as donor parents to increase the development of fragrance-biofortified tropical rice varieties adapted to growing conditions and consumer preferences, thus contributing to the global rice market.
  2. Abdul Aziz SFN, Salleh AB, Normi YM, Mohammad Latif MA, Alang Ahmad SA
    Enzyme Microb Technol, 2024 Mar 21;178:110439.
    PMID: 38579423 DOI: 10.1016/j.enzmictec.2024.110439
    Mini protein mimicking uricase (mp20) has shown significant potential as a replacement for natural enzymes in the development of uric acid biosensors. However, the design of mp20 has resulted to an inactive form of peptide, causing of loss their catalytic activity. Herein, this paper delineates the impact of various metal cofactors on the catalytic activity of mp20. The metal ion-binding site prediction and docking (MIB) web server was employed to identify the metal ion binding sites and their affinities towards mp20 residues. Among the tested metal ions, Cu2+ displayed the highest docking score, indicating its preference for interaction with Thr16 and Asp17 residues of mp20. To assess the catalytic activity of mp20 in the presence of metal ions, uric acid assays was monitored using a colorimetric method. The presence of Cu2+ in the assays promotes the activation of mp20, resulting in a color change based on quinoid production. Furthermore, the encapsulation of the mp20 within zeolitic imidazolate framework-8 (ZIF-8) notably improved the stability of the biomolecule. In comparison to the naked mp20, the encapsulated ZIFs biocomposite (mp20@ZIF-8) demonstrates superior stability, selectivity and sensitivity. ZIF's porous shells provides excellent protection, broad detection (3-100 μM) with a low limit (4.4 μM), and optimal function across pH (3.4-11.4) and temperature (20-100°C) ranges. Cost-effective and stable mp20@ZIF-8 surpasses native uricase, marking a significant biosensor technology breakthrough. This integration of metal cofactor optimization and robust encapsulation sets new standards for biosensing applications.
  3. Latif MA, Ghufran R, Wahid ZA, Ahmad A
    Water Res, 2011 Oct 15;45(16):4683-99.
    PMID: 21764417 DOI: 10.1016/j.watres.2011.05.049
    The UASB process among other treatment methods has been recognized as a core method of an advanced technology for environmental protection. This paper highlights the treatment of seven types of wastewaters i.e. palm oil mill effluent (POME), distillery wastewater, slaughterhouse wastewater, piggery wastewater, dairy wastewater, fishery wastewater and municipal wastewater (black and gray) by UASB process. The purpose of this study is to explore the pollution load of these wastewaters and their treatment potential use in upflow anaerobic sludge blanket process. The general characterization of wastewater, treatment in UASB reactor with operational parameters and reactor performance in terms of COD removal and biogas production are thoroughly discussed in the paper. The concrete data illustrates the reactor configuration, thus giving maximum awareness about upflow anaerobic sludge blanket reactor for further research. The future aspects for research needs are also outlined.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links