Determining the control threshold for a pest is common prior to initiating a pest control program; however, previous studies related to the house fly control threshold for a poultry farm are insufficient for determining such a threshold. This study aimed to predict the population changes of house fly population by comparing the intrinsic rate of increase (rm) for different house fly densities in a simulated system. This study first defined the knee points of a known population growth curve as a control threshold by comparing the rm of five densities of house flies in a simulated condition. Later, to understand the interactions between the larval and adult populations, the correlation between larval and adult capacity rate (rc) was studied. The rm values of 300- and 500-fly densities were significantly higher compared with the rm values at densities of 50 and 100 flies. This result indicated their representative indices as candidates for a control threshold. The rc of larval and adult populations were negatively correlated with densities of fewer than 300 flies; this implicated adult populations with fewer than 300 flies as declining while the larval population was growing; therefore, control approaches should focus on the immature stages. The results in the present study suggest a control threshold for house fly populations. Future works should focus on calibrating the threshold indices in field conditions.
The tropical bed bug is scientifically recognized as a significant public health problem. While there is an increased awareness about their resurgence by medical and life science committees, efficient bed bug management still remains unresolved. The solution may soon arise, as information about bed bugs' infestation dynamics and systematics are becoming more distinguishable. Recent developments in studies about bed bugs are based on molecular intervention by determining their genetic variation and phylogeography. The aim of this study is to assess the phylogenetic relationships and genetic diversity among the populations of tropical bed bugs inhabiting Malaysia. A molecular genotyping study was conducted with 22 tropical bed bug populations composed of three individuals per population. The mitochondrial (COI) gene was used as a marker. The data obtained were analyzed using the T-Coffee, ClustalX, MEGA 6.0, and PAUP software. The results showed one main monophyletic clade that consisted of two groups: Ch01 and Ch02. Ch02 consists of samples from the Bandar Hilir population, differing from the other populations studied by one singleton base. However, as there were no changes in the amino acid, this singleton genetic variation was considered to have no effect on genetic differentiation. Ch01 shows similarity with some sequence of Cimex hemipterus (F.) from Thailand, suggesting an international diversity connection. The disparity index apparently suggests that all isolates are homogeneous populations and are supported by the low value of the mean pairwise distance between isolates. This study will increase the knowledge about phylogeographic diversity of tropical bed bug in Malaysia.
Simulium (Simulium) umphangense, a new human-biting species of black fly, is described based on females captured while attacking humans in western and central Thailand. The female of this new species is similar to those of S. (S.) indicum Becher, S. (S.) nigrogilvum Summers, and S. (S.) vanellum Huang et al. in the Simulium griseifrons species-group of the subgenus Simulium Latreille in having the frons densely covered with golden-yellow short hairs, a character rarely found in the subgenus Simulium. This new species is readily distinguished from the three related species by having a darkened fore tibia, a bare subcosta (or rarely with a few hairs), and an ovipositor valve not protruded posteriorly. Additional diagnostic characters of this new species are noted. This is the seventh human-biting species of black fly in Thailand.