Displaying publications 61 - 80 of 92 in total

Abstract:
Sort:
  1. Mohammed KI, Zaidan AA, Zaidan BB, Albahri OS, Alsalem MA, Albahri AS, et al.
    J Med Syst, 2019 Jun 11;43(7):223.
    PMID: 31187288 DOI: 10.1007/s10916-019-1362-x
    Remotely monitoring a patient's condition is a serious issue and must be addressed. Remote health monitoring systems (RHMS) in telemedicine refers to resources, strategies, methods and installations that enable doctors or other medical professionals to work remotely to consult, diagnose and treat patients. The goal of RHMS is to provide timely medical services at remote areas through telecommunication technologies. Through major advancements in technology, particularly in wireless networking, cloud computing and data storage, RHMS is becoming a feasible aspect of modern medicine. RHMS for the prioritisation of patients with multiple chronic diseases (MCDs) plays an important role in sustainably providing high-quality healthcare services. Further investigations are required to highlight the limitations of the prioritisation of patients with MCDs over a telemedicine environment. This study introduces a comprehensive and inclusive review on the prioritisation of patients with MCDs in telemedicine applications. Furthermore, it presents the challenges and open issues regarding patient prioritisation in telemedicine. The findings of this study are as follows: (1) The limitations and problems of existing patients' prioritisation with MCDs are presented and emphasised. (2) Based on the analysis of the academic literature, an accurate solution for remote prioritisation in a large scale of patients with MCDs was not presented. (3) There is an essential need to produce a new multiple-criteria decision-making theory to address the current problems in the prioritisation of patients with MCDs.
  2. Fauzi MFA, Chen W, Knight D, Hampel H, Frankel WL, Gurcan MN
    J Med Syst, 2019 Dec 18;44(2):38.
    PMID: 31853654 DOI: 10.1007/s10916-019-1515-y
    Tumor budding is defined as the presence of single tumor cells or small tumor clusters (less than five cells) that 'bud' from the invasive front of the main tumor. Tumor budding (TB) has recently emerged as an important adverse prognostic factor for many different cancer types. In colorectal carcinoma (CRC), tumor budding has been independently associated with lymph node metastasis and poor outcome. Pathologic assessment of tumor budding by light microscopy requires close evaluation of tumor invasive front on intermediate to high power magnification, entailing locating the 'hotspot' of tumor budding, counting all TB in one high power field, and generating a tumor budding score. By automating these time-consuming tasks, computer-assisted image analysis tools can be helpful for daily pathology practice, since tumor budding reporting is now recommended on select cases. In this paper, we report our work on the development of a tumor budding detection system in CRC from whole-slide Cytokeratin AE1/3 images, based on de novo computer algorithm that automates morphometric analysis of tumor budding.
  3. Reza AW, Eswaran C
    J Med Syst, 2011 Feb;35(1):17-24.
    PMID: 20703589 DOI: 10.1007/s10916-009-9337-y
    The increasing number of diabetic retinopathy (DR) cases world wide demands the development of an automated decision support system for quick and cost-effective screening of DR. We present an automatic screening system for detecting the early stage of DR, which is known as non-proliferative diabetic retinopathy (NPDR). The proposed system involves processing of fundus images for extraction of abnormal signs, such as hard exudates, cotton wool spots, and large plaque of hard exudates. A rule based classifier is used for classifying the DR into two classes, namely, normal and abnormal. The abnormal NPDR is further classified into three levels, namely, mild, moderate, and severe. To evaluate the performance of the proposed decision support framework, the algorithms have been tested on the images of STARE database. The results obtained from this study show that the proposed system can detect the bright lesions with an average accuracy of about 97%. The study further shows promising results in classifying the bright lesions correctly according to NPDR severity levels.
  4. Tan CC, Eswaran C
    J Med Syst, 2011 Feb;35(1):49-58.
    PMID: 20703586 DOI: 10.1007/s10916-009-9340-3
    This paper presents the results obtained for medical image compression using autoencoder neural networks. Since mammograms (medical images) are usually of big sizes, training of autoencoders becomes extremely tedious and difficult if the whole image is used for training. We show in this paper that the autoencoders can be trained successfully by using image patches instead of the whole image. The compression performances of different types of autoencoders are compared based on two parameters, namely mean square error and structural similarity index. It is found from the experimental results that the autoencoder which does not use Restricted Boltzmann Machine pre-training yields better results than those which use this pre-training method.
  5. Lalitha V, Eswaran C
    J Med Syst, 2007 Dec;31(6):445-52.
    PMID: 18041276
    Monitoring the depth of anesthesia (DOA) during surgery is very important in order to avoid patients' interoperative awareness. Since the traditional methods of assessing DOA which involve monitoring the heart rate, pupil size, sweating etc, may vary from patient to patient depending on the type of surgery and the type of drug administered, modern methods based on electroencephalogram (EEG) are preferred. EEG being a nonlinear signal, it is appropriate to use nonlinear chaotic parameters to identify the anesthetic depth levels. This paper discusses an automated detection method of anesthetic depth levels based on EEG recordings using non-linear chaotic features and neural network classifiers. Three nonlinear parameters, namely, correlation dimension (CD), Lyapunov exponent (LE) and Hurst exponent (HE) are used as features and two neural network models, namely, multi-layer perceptron network (feed forward model) and Elman network (feedback model) are used for classification. The neural network models are trained and tested with single and multiple features derived from chaotic parameters and the performances are evaluated in terms of sensitivity, specificity and overall accuracy. It is found from the experimental results that the Lyapunov exponent feature with Elman network yields an overall accuracy of 99% in detecting the anesthetic depth levels.
  6. Sriraam N, Eswaran C
    J Med Syst, 2006 Dec;30(6):439-48.
    PMID: 17233156
    Two-stage lossless data compression methods involving predictors and encoders are well known. This paper discusses the application of context based error modeling techniques for neural network predictors used for the compression of EEG signals. Error modeling improves the performance of a compression algorithm by removing the statistical redundancy that exists among the error signals after the prediction stage. In this paper experiments are carried out by using human EEG signals recorded under various physiological conditions to evaluate the effect of context based error modeling in the EEG compression. It is found that the compression efficiency of the neural network based predictive techniques is significantly improved by using the error modeling schemes. It is shown that the bits per sample required for EEG compression with error modeling and entropy coding lie in the range of 2.92 to 6.62 which indicates a saving of 0.3 to 0.7 bits compared to the compression scheme without error modeling.
  7. Logeswaran R, Eswaran C
    J Med Syst, 2006 Apr;30(2):133-8.
    PMID: 16705998
    Many medical examinations involve acquisition of a large series of slice images for 3D reconstruction of the organ of interest. With the paperless hospital concept and telemedicine, there is very heavy utilization of limited electronic storage and transmission bandwidth. This paper proposes model-based compression to reduce the load on such resources, as well as aid diagnosis through the 3D reconstruction of the structures of interest, for images acquired by various modalities, such as MRI, Ultrasound, CT, PET etc. and stored in the DICOM file format. An example implementation for the biliary track in MRCP images is illustrated in the paper. Significant compression gains may be derived from the proposed method, and a suitable mixture of the models and raw images would enhance the patient medical history archives as the models may be stored in the DICOM file format used in most medical archiving systems.
  8. Logeswaran R, Eswaran C
    J Med Syst, 2006 Aug;30(4):317-24.
    PMID: 16978012
    Tumors are generally difficult to detect in Magnetic Resonance (MR) images as they can be of varying intensities and do not appear as clear structures on these images. This difficulty is more prominent in MR Cholangiopancreatography (MRCP), which is the MR technology using a special sequence of T2-weighted imaging to identify the biliary tract, pancreatic duct, and gallbladder in the liver region, as MRCP images are more noisy in nature and are acquired for a more focused area with too much flexibility in position orientation for convenient computer-aided diagnosis. Based on the principle that the tumor mass manifests itself as blockage of the biliary tree structure, this paper introduces a technique that uses a region growing algorithm to identify discontinuities in the biliary tree as a means to preliminary detection of a possible tumor, in a fashion similar to the visual observation used by most radiologists in making their preliminary diagnosis. Through the use of appropriate image normalization, watershed segmentation, thresholding, rule-based region growing, and region analysis, the proposed technique is shown in this paper to be successful in identifying MRCP images with liver carcinoma from those with normal liver. Acquisition standardization, interactive image selection, and optimum image orientation will further enhance the accuracy of this proposed scheme for use in aiding clinical diagnosis at medical institutions.
  9. Reza AW, Eswaran C, Dimyati K
    J Med Syst, 2011 Dec;35(6):1491-501.
    PMID: 20703768 DOI: 10.1007/s10916-009-9426-y
    Due to increasing number of diabetic retinopathy cases, ophthalmologists are experiencing serious problem to automatically extract the features from the retinal images. Optic disc (OD), exudates, and cotton wool spots are the main features of fundus images which are used for diagnosing eye diseases, such as diabetic retinopathy and glaucoma. In this paper, a new algorithm for the extraction of these bright objects from fundus images based on marker-controlled watershed segmentation is presented. The proposed algorithm makes use of average filtering and contrast adjustment as preprocessing steps. The concept of the markers is used to modify the gradient before the watershed transformation is applied. The performance of the proposed algorithm is evaluated using the test images of STARE and DRIVE databases. It is shown that the proposed method can yield an average sensitivity value of about 95%, which is comparable to those obtained by the known methods.
  10. Logeswaran R, Chen LC
    J Med Syst, 2012 Apr;36(2):483-90.
    PMID: 20703702 DOI: 10.1007/s10916-010-9493-0
    Current trends in medicine, specifically in the electronic handling of medical applications, ranging from digital imaging, paperless hospital administration and electronic medical records, telemedicine, to computer-aided diagnosis, creates a burden on the network. Distributed Service Architectures, such as Intelligent Network (IN), Telecommunication Information Networking Architecture (TINA) and Open Service Access (OSA), are able to meet this new challenge. Distribution enables computational tasks to be spread among multiple processors; hence, performance is an important issue. This paper proposes a novel approach in load balancing, the Random Sender Initiated Algorithm, for distribution of tasks among several nodes sharing the same computational object (CO) instances in Distributed Service Architectures. Simulations illustrate that the proposed algorithm produces better network performance than the benchmark load balancing algorithms-the Random Node Selection Algorithm and the Shortest Queue Algorithm, especially under medium and heavily loaded conditions.
  11. Logeswaran R, Chen LC
    J Med Syst, 2008 Dec;32(6):453-61.
    PMID: 19058649
    Service architectures are necessary for providing value-added services in telecommunications networks, including those in medical institutions. Separation of service logic and control from the actual call switching is the main idea of these service architectures, examples include Intelligent Network (IN), Telecommunications Information Network Architectures (TINA), and Open Service Access (OSA). In the Distributed Service Architectures (DSA), instances of the same object type can be placed on different physical nodes. Hence, the network performance can be enhanced by introducing load balancing algorithms to efficiently distribute the traffic between object instances, such that the overall throughput and network performance can be optimised. In this paper, we propose a new load balancing algorithm called "Node Status Algorithm" for DSA infrastructure applicable to electronic-based medical institutions. The simulation results illustrate that this proposed algorithm is able to outperform the benchmark load balancing algorithms-Random Algorithm and Shortest Queue Algorithm, especially under medium and heavily loaded network conditions, which are typical of the increasing bandwidth utilization and processing requirements at paperless hospitals and in the telemedicine environment.
  12. Ullah F, Abdullah AH, Kaiwartya O, Cao Y
    J Med Syst, 2017 Jun;41(6):93.
    PMID: 28466452 DOI: 10.1007/s10916-017-0739-y
    Recently, Wireless Body Area Network (WBAN) has witnessed significant attentions in research and product development due to the growing number of sensor-based applications in healthcare domain. Design of efficient and effective Medium Access Control (MAC) protocol is one of the fundamental research themes in WBAN. Static on-demand slot allocation to patient data is the main approach adopted in the design of MAC protocol in literature, without considering the type of patient data specifically the level of severity on patient data. This leads to the degradation of the performance of MAC protocols considering effectiveness and traffic adjustability in realistic medical environments. In this context, this paper proposes a Traffic Priority-Aware MAC (TraPy-MAC) protocol for WBAN. It classifies patient data into emergency and non-emergency categories based on the severity of patient data. The threshold value aided classification considers a number of parameters including type of sensor, body placement location, and data transmission time for allocating dedicated slots patient data. Emergency data are not required to carry out contention and slots are allocated by giving the due importance to threshold value of vital sign data. The contention for slots is made efficient in case of non-emergency data considering threshold value in slot allocation. Moreover, the slot allocation to emergency and non-emergency data are performed parallel resulting in performance gain in channel assignment. Two algorithms namely, Detection of Severity on Vital Sign data (DSVS), and ETS Slots allocation based on the Severity on Vital Sign (ETS-SVS) are developed for calculating threshold value and resolving the conflicts of channel assignment, respectively. Simulations are performed in ns2 and results are compared with the state-of-the-art MAC techniques. Analysis of results attests the benefit of TraPy-MAC in comparison with the state-of-the-art MAC in channel assignment in realistic medical environments.
  13. Lahsasna A, Ainon RN, Zainuddin R, Bulgiba A
    J Med Syst, 2012 Oct;36(5):3293-306.
    PMID: 22252606 DOI: 10.1007/s10916-012-9821-7
    In the present paper, a fuzzy rule-based system (FRBS) is designed to serve as a decision support system for Coronary heart disease (CHD) diagnosis that not only considers the decision accuracy of the rules but also their transparency at the same time. To achieve the two above mentioned objectives, we apply a multi-objective genetic algorithm to optimize both the accuracy and transparency of the FRBS. In addition and to help assess the certainty and the importance of each rule by the physician, an extended format of fuzzy rules that incorporates the degree of decision certainty and importance or support of each rule at the consequent part of the rules is introduced. Furthermore, a new way for employing Ensemble Classifiers Strategy (ECS) method is proposed to enhance the classification ability of the FRBS. The results show that the generated rules are humanly understandable while their accuracy compared favorably with other benchmark classification methods. In addition, the produced FRBS is able to identify the uncertainty cases so that the physician can give a special consideration to deal with them and this will result in a better management of efforts and tasks. Furthermore, employing ECS has specifically improved the ability of FRBS to detect patients with CHD which is desirable feature for any CHD diagnosis system.
  14. Choong MK, Logeswaran R, Bister M
    J Med Syst, 2006 Jun;30(3):139-43.
    PMID: 16848126
    This paper attempts to improve the diagnostic quality of magnetic resonance (MR) images through application of lossy compression as a noise-reducing filter. The amount of imaging noise present in MR images is compared with the amount of noise introduced by the compression, with particular attention given to the situation where the compression noise is a fraction of the imaging noise. A popular wavelet-based algorithm with good performance, Set Partitioning in Hierarchical Trees (SPIHT), was employed for the lossy compression. Tests were conducted with a number of MR patient images and corresponding phantom images. Different plausible ratios between imaging noise and compression noise (ICR) were considered, and the achievable compression gain through the controlled lossy compression was evaluated. Preliminary results show that at certain ICR's, it becomes virtually impossible to distinguish between the original and compressed-decompressed image. Radiologists presented with a blind test, in certain cases, showed preference to the compressed image rather than the original uncompressed ones, indicating that under controlled circumstances, lossy image compression can be used to improve the diagnostic quality of the MR images.
  15. Zailani S, Iranmanesh M, Nikbin D, Beng JK
    J Med Syst, 2015 Jan;39(1):172.
    PMID: 25503418 DOI: 10.1007/s10916-014-0172-4
    With today's highly competitive market in the healthcare industry, Radio Frequency Identification (RFID) is a technology that can be applied by hospitals to improve operational efficiency and to gain a competitive advantage over their competitors. The purpose of this study is to investigate the factors that may effect RFID adoption in Malaysia's healthcare industry. In addition, the moderating role of occupational level was tested. Data was collected from 223 managers as well as healthcare and supporting staffs. This data was analyzed using the partial least squares technique. The results show that perceived ease of use and usefulness, government policy, top management support, and security and privacy concerns have an effect on the intent to adopt RFID in hospitals. There is a wide gap between managers and healthcare staff in terms of the factors that influence RFID adoption. The results of this study will help decision makers as well as managers in the healthcare industry to better understand the determinants of RFID adoption. Additionally, it will assist in the process of RFID adoption, and therefore, spread the usage of RFID technology in more hospitals.
  16. Mueen A, Zainuddin R, Baba MS
    J Med Syst, 2010 Oct;34(5):859-64.
    PMID: 20703623 DOI: 10.1007/s10916-009-9300-y
    The next generation of medical information system will integrate multimedia data to assist physicians in clinical decision-making, diagnoses, teaching, and research. This paper describes MIARS (Medical Image Annotation and Retrieval System). MIARS not only provides automatic annotation, but also supports text based as well as image based retrieval strategies, which play important roles in medical training, research, and diagnostics. The system utilizes three trained classifiers, which are trained using training images. The goal of these classifiers is to provide multi-level automatic annotation. Another main purpose of the MIARS system is to study image semantic retrieval strategy by which images can be retrieved according to different levels of annotation.
  17. Madhloom HT, Kareem SA, Ariffin H
    J Med Syst, 2012 Aug;36(4):2149-58.
    PMID: 21399912 DOI: 10.1007/s10916-011-9679-0
    An important preliminary step in the diagnosis of leukemia is the visual examination of the patient's peripheral blood smear under the microscope. Morphological changes in the white blood cells can be an indicator of the nature and severity of the disease. Manual techniques are labor intensive, slow, error prone and costly. A computerized system can be used as a supportive tool for the specialist in order to enhance and accelerate the morphological analysis process. This research present a new method that integrates color features with the morphological reconstruction to localize and isolate lymphoblast cells from a microscope image that contains many cells. The localization and segmentation are conducted using a proposed method that consists of an integration of several digital image processing techniques. 180 microscopic blood images were tested, and the proposed framework managed to obtain 100% accuracy for the localization of the lymphoblast cells and separate it from the image scene. The results obtained indicate that the proposed method can be safely used for the purpose of lymphoblast cells localization and segmentation and subsequently, aiding the diagnosis of leukemia.
  18. Albahri OS, Zaidan AA, Zaidan BB, Hashim M, Albahri AS, Alsalem MA
    J Med Syst, 2018 Jul 25;42(9):164.
    PMID: 30043085 DOI: 10.1007/s10916-018-1006-6
    Promoting patient care is a priority for all healthcare providers with the overall purpose of realising a high degree of patient satisfaction. A medical centre server is a remote computer that enables hospitals and physicians to analyse data in real time and offer appropriate services to patients. The server can also manage, organise and support professionals in telemedicine. Therefore, a remote medical centre server plays a crucial role in sustainably delivering quality healthcare services in telemedicine. This article presents a comprehensive review of the provision of healthcare services in telemedicine applications, especially in the medical centre server. Moreover, it highlights the open issues and challenges related to providing healthcare services in the medical centre server within telemedicine. Methodological aspects to control and manage the process of healthcare service provision and three distinct and successive phases are presented. The first phase presents the identification process to propose a decision matrix (DM) on the basis of a crossover of 'multi-healthcare services' and 'hospital list' within intelligent data and service management centre (Tier 4). The second phase discusses the development of a DM for hospital selection on the basis of integrated VIKOR-Analytic Hierarchy Process (AHP) methods. Finally, the last phase examines the validation process for the proposed framework.
  19. Albahri AS, Zaidan AA, Albahri OS, Zaidan BB, Alsalem MA
    J Med Syst, 2018 Jun 23;42(8):137.
    PMID: 29936593 DOI: 10.1007/s10916-018-0983-9
    The burden on healthcare services in the world has increased substantially in the past decades. The quality and quantity of care have to increase to meet surging demands, especially among patients with chronic heart diseases. The expansion of information and communication technologies has led to new models for the delivery healthcare services in telemedicine. Therefore, mHealth plays an imperative role in the sustainable delivery of healthcare services in telemedicine. This paper presents a comprehensive review of healthcare service provision. It highlights the open issues and challenges related to the use of the real-time fault-tolerant mHealth system in telemedicine. The methodological aspects of mHealth are examined, and three distinct and successive phases are presented. The first discusses the identification process for establishing a decision matrix based on a crossover of 'time of arrival of patient at the hospital/multi-services' and 'hospitals' within mHealth. The second phase discusses the development of a decision matrix for hospital selection based on the MAHP method. The third phase discusses the validation of the proposed system.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links