Displaying publications 61 - 80 of 98 in total

Abstract:
Sort:
  1. Fadzlillah NA, Rohman A, Ismail A, Mustafa S, Khatib A
    J Oleo Sci, 2013;62(8):555-62.
    PMID: 23985484
    In dairy product sector, butter is one of the potential sources of fat soluble vitamins, namely vitamin A, D, E, K; consequently, butter is taken into account as high valuable price from other dairy products. This fact has attracted unscrupulous market players to blind butter with other animal fats to gain economic profit. Animal fats like mutton fat (MF) are potential to be mixed with butter due to the similarity in terms of fatty acid composition. This study focused on the application of FTIR-ATR spectroscopy in conjunction with chemometrics for classification and quantification of MF as adulterant in butter. The FTIR spectral region of 3910-710 cm⁻¹ was used for classification between butter and butter blended with MF at various concentrations with the aid of discriminant analysis (DA). DA is able to classify butter and adulterated butter without any mistakenly grouped. For quantitative analysis, partial least square (PLS) regression was used to develop a calibration model at the frequency regions of 3910-710 cm⁻¹. The equation obtained for the relationship between actual value of MF and FTIR predicted values of MF in PLS calibration model was y = 0.998x + 1.033, with the values of coefficient of determination (R²) and root mean square error of calibration are 0.998 and 0.046% (v/v), respectively. The PLS calibration model was subsequently used for the prediction of independent samples containing butter in the binary mixtures with MF. Using 9 principal components, root mean square error of prediction (RMSEP) is 1.68% (v/v). The results showed that FTIR spectroscopy can be used for the classification and quantification of MF in butter formulation for verification purposes.
  2. Fadzillah NA, Man Yb, Rohman A, Rosman AS, Ismail A, Mustafa S, et al.
    J Oleo Sci, 2015;64(7):697-703.
    PMID: 25994556 DOI: 10.5650/jos.ess14255
    The authentication of food products from the presence of non-allowed components for certain religion like lard is very important. In this study, we used proton Nuclear Magnetic Resonance ((1)H-NMR) spectroscopy for the analysis of butter adulterated with lard by simultaneously quantification of all proton bearing compounds, and consequently all relevant sample classes. Since the spectra obtained were too complex to be analyzed visually by the naked eyes, the classification of spectra was carried out.The multivariate calibration of partial least square (PLS) regression was used for modelling the relationship between actual value of lard and predicted value. The model yielded a highest regression coefficient (R(2)) of 0.998 and the lowest root mean square error calibration (RMSEC) of 0.0091% and root mean square error prediction (RMSEP) of 0.0090, respectively. Cross validation testing evaluates the predictive power of the model. PLS model was shown as good models as the intercept of R(2)Y and Q(2)Y were 0.0853 and -0.309, respectively.
  3. Yusof NS, Razak NA, Khan MN
    J Oleo Sci, 2013;62(5):257-69.
    PMID: 23648400
    A semi empirical kinetic (SEK) method has been used to determine the ratio of cetyltrimethylammonium bromide (CTABr) micellar binding constants of counterion X⁻ and Br⁻ (a reference counterion), i.e. K(X)/K(Br) (=R(X)(Br)). The values of K(X) and K(Br) have been derived from the kinetic parameters obtained in the presence spherical/non-spherical and spherical micelles, respectively. This rather new method gives the respective mean values of R(X)(Br) as 45±2, 25±3, 4.7±0.6 and 119±10 for X=2,4-, 2,5-, 2,6- and 3,4-Cl₂C₆H₃CO₂⁻ (Cl₂Bz'Na). Literature lacks the report on the values of R(X)(Br) for all X except for X=2,6-Cl₂C₆H₃CO₂⁻ (2,6-Cl2Bz'⁻) for which the reported value is 5.0. Rheological properties, such as shear thinning behavior, reveal indirectly the presence of wormlike micelles (WM) in the CTABr micellar solutions containing MX for all X except X=2,6-Cl₂Bz'⁻. The micelles remain spherical within [2,6-Cl₂Bz'⁻] range 0.01-0.34 M at 0.015 M CTABr. The maxima of the plots of zero shear viscosity, η₀, (obtained from the initial plateau region of flow curves, i.e. η vs. γ curve) vs. [MX] (MX=2,4-, 2,5- and 3,4-Cl₂Bz'Na) at 0.015 M CTABr also support indirectly the presence of linear, entangled and branched WM.
  4. Mohd Noh MA, Khalid K, Ariffin A, Khan MN
    J Oleo Sci, 2016;65(9):749-58.
    PMID: 27581491 DOI: 10.5650/jos.ess16048
    The present study is focused on the effect of the TTABr/MX/H2O-nanoparticles on the rate of piperidinolysis of ionized phenyl salicylate where TTABr represents tetradecyltrimethylammonium bromide and MX = NaCl, NaBr and CnH2n+1CO2Na with n = 4, 5, 6 and 7. Pseudo-first-order rate constant for the piperidinolysis of ionized phenyl salicylate at 35°C and constant concentration [PSa(-)]T = 0.2 mM, [Pip]T = 0.1 M, [NaOH] = 30 mM, [TTABr]T and different [MX] follow an empirical relationship which gives two empirical constant, (X)kcat and K(X/S). The value of relative counterion (X) binding constant, RX(Br) were calculated from the relationship; RX(Br) = (X)kcat/(Br)kcat. The values of RX(Br) for X = C4H9CO2(-), C5H11CO2(-), C6H13CO2(-), and C7H15CO2(-) are increasing with increase in the number of alkyl chain of counterion X.
  5. Fagge II, Khalid K, Noh MAM, Yusof NSM, Zain SM, Khan MN
    J Oleo Sci, 2018 Jan 01;67(1):55-66.
    PMID: 29238023 DOI: 10.5650/jos.ess17033
    Behaviors of cationic and nonionic mixed micelles in the form of hexadecyltrimethylammonium bromide (HDABr) and hexadecyltrimethylammonium bromide-Polyethylene glycol hexadecyl ether (C16E20), in the presence of inert salts (NaBr and 3,5-dichlorosodium benzoate), by the use of reaction probe between Pp and ionized PhSH (Pp = piperidine and PhSH = phenyl salicylate), has been reported in this work. The values of RXBr (RXBr denotes ion exchange constants obtained in the presence of micelles of different structural features) or KXBr (KXBr denotes ion exchange constants obtained in the presence of micelles of the same structural features) for 3,5-Cl2C6H3CO2- were almost the same at three different [HDABr]T (0.006, 0.010 and 0.015 M). The average value of RXBr or KXBr determined, in the presence of pure HDABr micelles, using semi empirical kinetic (SEK) method appeared to be almost 2½-fold larger (RXBr or KXBr = 198) than that in the presence of mixed HDABr-C16E20 micelles (RXBr or KXBr = 78). Rheological measurements indicated the existence of wormlike/twisted micelles and vesicle at 0.015 M pure HDABr, various [3,5-Cl2C6H3CO2Na], and 25 and 35℃ whereas there were evidence of only spherical micelles in the presence of mixed HDABr-C16E20 ([HDABr]T = 0.015 M and [C16E20]T = 0.006 M) at both temperatures.
  6. Gonawan FN, Bakar PNMA, Kamaruddin AH
    J Oleo Sci, 2021 Oct 05;70(10):1437-1445.
    PMID: 34497176 DOI: 10.5650/jos.ess21010
    The Lipase-catalyzed synthesis of glyceryl monocaffeate (GMC) in choline chloride-urea of natural deep eutectic solvent (NADES) media is reported to provide amphiphilic character to caffeic acid (CA). The modification of CA into GMC could potentially increase its solubility and widen the application of CA's biological activities in water and oil-based systems. The high conversion was achieved when the reaction was carried out with the addition of more than 20 %v/v water, at a high molar ratio of glycerol and 40°C. It was found that the lipase-catalyzed transesterification of ethyl caffeate (EC) and glycerol in choline chloride-urea of DES media obeyed ping-pong bi-bi mechanism with Vmax = 10.9 mmol.min-1, KmEC = 126.5 mmol and KmGly = 1842.7 mmol.
  7. Mohammed IA, Abd Khadir NK, Jaffar Al-Mulla EA
    J Oleo Sci, 2014;63(2):193-200.
    PMID: 24420063
    New polyurethane (PU) nanocomposites were prepared from a dispersion of 0 - 5% montmorillonite (MMT) clay with isocyanate and soya oil polyol that was synthesized via transesterification of triglycerides to reduce petroleum dependence. FT-IR spectra indicate the presence of hydrogen bonding between nanoclay and the polymer matrix, whereas the exfoliated structure of clay layers was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Optical microscopy, mechanical and thermal analyses were done to investigate significant improvement of the nanocomposites. The results showed PU-3% nanoclay (NC) showed optimum results in mechanical properties such as tensile and flexural strength but the lowest in impact strength.
  8. Ahmad Kurnin NA, Shah Ismail MH, Yoshida H, Izhar S
    J Oleo Sci, 2016;65(4):283-9.
    PMID: 27041513 DOI: 10.5650/jos.ess15209
    Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent.
  9. Ishaka A, Imam MU, Ismail M
    J Oleo Sci, 2020;69(10):1287-1295.
    PMID: 33028753 DOI: 10.5650/jos.ess20098
    Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects including lipid-lowering that have been extensively studied. However, its bioavailability is low. To investigate the effect of nanoemulsified rice bran wax policosanol (NPOL) on plasma homocysteine, heart and liver histology in hyperlipidemic rats, high-fat diet containing 2.5% cholesterol was used to induce hyperlipidemia in Sprague Dawley rats. The hyperlipidemic rats were treated with NPOL and rice bran wax policosanol (POL) in comparison with normal diet (ND), high-cholesterol diet (HCD) and simvastatin-treated rats. Plasma homocysteine, heart and liver histology, and hepatic mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG) were evaluated. The NPOL group, similar to the simvastatin group, showed reduced plasma homocysteine, preserved heart and liver histology, and down-regulated hepatic PPARG mRNA in comparison to the control group, and was better than the POL group. The results suggest that the modest effect of NPOL on homocysteine and preservation of heart and liver histology could be through the regulation of PPARG expression on a background of increased assimilation of rice bran wax policosanol.
  10. Abdul Habib NS, Yunus R, Rashid U, Taufiq-Yap YH, Abidin ZZ, Syam AM, et al.
    J Oleo Sci, 2014;63(5):497-506.
    PMID: 24717547
    The use of vegetable oil-based ester as a base fluid in synthetic drilling fluid has become a trend in drilling operations due to its environmental advantages. The transesterification reaction of palm oil methyl ester (POME) with 2-ethylhexanol (2EH) produced 98% of palm oil-based ethylhexyl ester in less than 30 minutes. Since the transesterification reaction of POME with 2EH is a reversible reaction, its kinetics was studied in the presence of excess EH and under vacuum. The POME-to-EH molar ratio and vacuum pressure were held constant at 1:2 and 1.5 mbar respectively and the effects of temperature (70 to 110°C) were investigated. Using excess of EH and continual withdrawal of methanol via vacuum promoted the reaction to complete in less than 10 minutes. The rate constant of the reaction (k) obtained from the kinetics study was in the range of 0.44 to 0.66 s⁻¹ and the activation energy was 15.6 kJ.mol⁻¹. The preliminary investigations on the lubrication properties of drilling mud formulated with palm oil-based 2EH ester indicated that the base oil has a great potential to substitute the synthetic ester-based oil for drilling fluid. Its high kinematic viscosity provides better lubrication to the drilling fluid compared to other ester-based oils. The pour point (-15°C) and flash point (204°C) values are superior for the drilling fluid formulation. The plastic viscosity, HPHT filtrate loss and emulsion stability of the drilling fluid had given acceptable values, while gel strength and yield point could be improved by blending it with proper additives.
  11. Ping BTY, Aziz HA, Idris Z
    J Oleo Sci, 2018;67(3):265-272.
    PMID: 29491321 DOI: 10.5650/jos.ess17164
    High-Performance Liquid Chromatography (HPLC) methods via evaporative light scattering (ELS) and refractive index (RI) detectors are used by the local palm oil industry to monitor the TAG profiles of palm oil and its fractions. The quantitation method used is based on area normalization of the TAG components and expressed as percentage area. Although not frequently used, peak-area ratios based on TAG profiles are a possible qualitative method for characterizing the TAG of palm oil and its fractions. This paper aims to compare these two detectors in terms of peak-area ratio, percentage peak area composition, and TAG elution profiles. The triacylglycerol (TAG) composition for palm oil and its fractions were analysed under similar HPLC conditions i.e. mobile phase and column. However, different sample concentrations were used for the detectors while remaining within the linearity limits of the detectors. These concentrations also gave a good baseline resolved separation for all the TAGs components. The results of the ELSD method's percentage area composition for the TAGs of palm oil and its fractions differed from those of RID. This indicates an unequal response of TAGs for palm oil and its fractions using the ELSD, also affecting the peak area ratios. They were found not to be equivalent to those obtained using the HPLC-RID. The ELSD method showed a better baseline separation for the TAGs components, with a more stable baseline as compared with the corresponding HPLC-RID. In conclusion, the percentage area compositions and peak-area ratios for palm oil and its fractions as derived from HPLC-ELSD and RID were not equivalent due to different responses of TAG components to the ELSD detector. The HPLC-RID has a better accuracy for percentage area composition and peak-area ratio because the TAG components response equally to the detector.
  12. Hoidy WH, Ahmad MB, Al-Mulla EA, Yunus WZ, Ibrahim Na
    J Oleo Sci, 2010;59(5):229-33.
    PMID: 20431238
    Difatty acyl thiourea (DFAT), which has biological activities as antibiotics and antifungal, has been synthesized from palm oil and thiourea using sodium ethoxide as catalyst. Ethyl fatty ester (EFE) and glycerol were produced as by-products. The synthesis was carried out by reflux palm oil with thiourea in ethanol. In this process, palm oil converted to about 81% pure DFAT after 11 hour and molar ratio of thiourea to palm oil was 6.0: 1 at 78 degrees C. Elemental analysis, Fourier transform iInfrared (FTIR) spectroscopy and (1)H nuclear magnetic resonance (NMR) technique were used to characterize both DFAT and EFE.
  13. Hoidy WH, Ahmad MB, Al-Mulla EA, Yunus WM, Ibrahim Na
    J Oleo Sci, 2010;59(1):15-9.
    PMID: 20032595
    In this study, fatty haydroxamic acids (FHAs), which have biological activities as antibiotics and antifungal, have been synthesized via refluxing of triacylglycrides, palm olein, palm stearin or corn oil with hydroxylamine hydrochloride. The products were characterized using the complex formation test of hydroxamic acid group with zinc(I), copper(II) and iron(III), various technique methods including nuclear magnetic resonance ((1)H NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and elemental analysis. Parameters that may affect the conversion of oils to FHAs including the effect of reaction time, effect of organic solvent and effect of hydro/oil molar issue were also investigated in this study. Results of characterization indicate that FHAs were successfully produced from triacylglycrides. The conversion percentages of palm stearin, palm olein and corn oil into their fatty hydroxamic acids are 82, 81 and 78, respectively. Results also showed that hexane is the best organic solvent to produce the FHAs from the three oils used in this study. The optimum reaction time to achieve the maximum conversion percentage of the oils to FHAs was found to be 10 hours for all the three oils, while the optimum molar ration of hydro/to oil was found to be 7:1 for all the different three oils.
  14. Mohammed IA, Al-Mulla EA, Kadar NK, Ibrahim M
    J Oleo Sci, 2013;62(12):1059-72.
    PMID: 24292358
    Palm and soya oils were converted to monoglycerides via transesterification of triglycerides with glycerol by one step process to produce renewable polyols. Thermoplastic polyurethanes (TPPUs) were prepared from the reaction of the monoglycerides which act as polyol with 4,4'-methylenediphenyldiisocyanate (MDI) whereas, thermosetting polyurethanes (TSPUs) were prepared from the reaction of glycerol, MDI and monoglycerides in one pot. Characterization of the polyurethanes was carried out by FT-IR, (1)H NMR, and iodine value and sol-gel fraction. The TSPUs showed good thermal properties compared to TPPUs as well as TSPUs exhibits good properties in pencil hardness and adhesion, however poorer in flexural and impact strength compared to TPPUs. The higher percentage of cross linked fraction, the higher degree of cross linking occurred, which is due to the higher number of double bond presents in the TSPUs. These were reflected in iodine value test as the highest iodine value of the soya-based thermosetting polyurethanes confirmed the highest degree of cross linking. Polyurethanes based on soya oil showed better properties compared to palm oil. This study is a breakthrough development of polyurethane resins using palm and soya oils as one of the raw materials.
  15. Lin SW, Huey SM
    J Oleo Sci, 2009;58(11):549-55.
    PMID: 19844069
    Acidolysis to incorporate oleic acid into refined, bleached and deodorized (RBD) palm olein (IV 56) using various lipases (enzymes) as catalysts to increase the oleic content of the oil was investigated. Immobilised lipases (lipase PLG, Lipozyme TL IM, Lipozyme RM IM and Novozym 435) and non-immobilised lipase (lipase PL) were used in this study to compare the effectiveness of the selected lipases in catalyzing the reaction to produce a high oleic oil. The results showed that the TAG of OLO/OOL content was increased at least 4 fold and OOO content was increased at least 3 fold when a 5% enzyme load was used. Lipase PL showed the greatest increase in tri-unsaturated triacylglycerols (TAGs) content. A pilot scale experiment conducted using TL IM enzyme, followed by recovery of the oil and fractionation allows the production of oils with varying oleic contents. A high oleic content of 56% was achievable.
  16. Siwayanan P, Chin LZ, Parthiban A, Ayodele OB, Hong BZ
    J Oleo Sci, 2024;73(4):479-487.
    PMID: 38556282 DOI: 10.5650/jos.ess23121
    Global demand for epoxidized vegetable oil has been steadily growing. Epoxidized vegetable oils are typically produced using a two-pot synthesis process in which the oxidation and epoxidation reactions are carried out sequentially. This two-pot synthesis method, however, has a major drawback in industrialscale production, particularly when it comes to operational and process safety issues. A laboratory-scale one-pot synthesis method was attempted in this study with the aim to safely synthesize epoxidized Moringa Oleifera oil (eMOo) by avoiding the occurrence of undesired exothermic runaway reaction. The oil extracted from Moringa Oleifera oil seed kernel (MOo) was used as a starting component due to its high degree of unsaturation and also because the Moringa Oleifera plant can be freely grown in any soil conditions. Two parallel oxidation and epoxidation reactions were carried out simultaneously in this one-pot synthesis method to produce eMOo. The effect of five different mole ratios of MOo, acetic acid and hydrogen peroxide (1:1:1, 1:1:2, 1:1.5:2, 1:1.75:2 and 1:2:2, respectively) on reaction mechanism was investigated at the controlled temperature range of 43 - 55°C and reaction time of 0 - 120 min. The physicochemical properties of MOo as well as the oxirane oxygen content (OOC) of the resulting eMOo were characterized. In addition, GC-MS and FTIR analysis were performed to verify the molecular composition of MOo and also to identify the epoxy group of the resulting eMOo respectively. Among the five different mole ratios studied, the 1:1.5:2 mole ratio has the highest unsaturation conversion of 79.57% and OOC of 4.12%.
  17. Husain IA, Alkhatib MF, Jammi MS, Mirghani ME, Bin Zainudin Z, Hoda A
    J Oleo Sci, 2014;63(8):747-52.
    PMID: 25007744
    Presence of fat, oil, and grease (FOG) in wastewater is an ever-growing concern to municipalities and solid-waste facility operators. FOG enters the sewer system from restaurants, residences, and industrial food facilities. Its release into the sewer system results in a continuous build-up that causes eventual blockage of sewer pipes. Several researchers have investigated FOG deposition based on the local conditions of sewers and lifestyle. This paper attempts to review the physical and chemical characteristics of FOG, sources of FOG, and potential chemical and biological reactions of FOG. The effect of the aforementioned factors on the FOG-deposition mechanism is also discussed. Moreover, insight into the current control and treatment methods and potential reuse of FOG is highlighted. It is expected that this review would provide scientists and the concerned authorities a holistic view of the recent researches on FOG control, treatment, and reuse.
  18. Othman R, Mohd Zaifuddin FA, Hassan NM
    J Oleo Sci, 2014;63(8):753-60.
    PMID: 25017864
    Carotenoids are bioactive compounds with remarkably special properties produced by plants in response to internal and external stresses. In this review paper, we focus on the subject of carotenoid biosynthesis and several factors that have been reported to significantly enhance or reduce carotenoid accumulation in studied plant species. These factors include varietal aspects, location, growing season, and type of stress experienced by a plant. In addition, we propose that there are three stress resistance mechanisms in plants: avoidance, tolerance, and acclimation. Better understanding of the environmental factors affecting carotenoid biosynthesis will help researchers to develop methods for enhancing the production of carotenoids and other pigments to desired concentrations in plant crops.
  19. Osman F, Jaswir I, Khaza'ai H, Hashim R
    J Oleo Sci, 2007;56(3):107-13.
    PMID: 17898471
    Total lipid contents and fatty acid composition of 13 marine fish species namely, "jenahak" (Lutianus agentimaculatus), "kebasi" (Anadontostoma chacunda), "duri" (Arius cumatranus), "tenggiri batang" (Scomberomorus commersoni), "kembong" (Rastrelliger kanagurta), "kintan" or "sebalah" (Psettodes crumei), "kerisi" (Pristipomodes typus), "kerapu" (Epinephelus sexfasciatus), "gelama kling" (Sciaena dussumieri), "malong" (Congresax talabon), "laban" (Cynoglossus lingua), "yu 9" (Scolidon sorrakowah) and "bagi" (Aacnthurs nigrosis) commonly found in Pulau Tuba, one of the islands surrounding the popular tourist destination Langkawi in Malaysia were determined. All fish showed a considerable amount of unsaturated fatty acids particularly those with 4, 5 and 6 double bonds. Two physiologically important n-3 polyunsaturated fatty acids (PUFAs), i.e. eicosapentaenoic acid (EPA) and docasahaexaenoic acid (DHA), made up of more than 50% of the total PUFAs. For saturated fatty acids, palmitic was found to be the major one in all types of fish studied. Based on DHA, EPA and arachidonic acid (AA) contents, "gelama kling" was found to be the best source (23, 11 and 7%, respectively) followed by "kerapu" (21, 10, 9%) and "sebalah" (19, 14, 4%).
  20. Ahmad Nizar NN, Nazrim Marikkar JM, Hashim DM
    J Oleo Sci, 2013;62(7):459-64.
    PMID: 23823911
    A study was conducted to differentiate lard, chicken fat, beef fat and mutton fat using Gas Chromatography Mass Spectrometry (GC-MS) and Elemental Analyzer-Isotope Ratio Mass Spectrometry (EA-IRMS). The comparison of overall fatty acid data showed that lard and chicken fat share common characteristics by having palmitic, oleic and linoleic acid as major fatty acids while beef and mutton fats shared common characteristics by possessing palmitic, stearic and oleic acid as major fatty acids. The direct comparisons among the fatty acid data, therefore, may not be suitable for discrimination of different animal fats. When the fatty acid distributional data was subjected to Principle Component Analysis (PCA), it was demonstrated that stearic, oleic and linoleic acids as the most discriminating parameters in the clustering of animal fats into four subclasses. The bulk carbon analysis of animal fats using EA-IRMS showed that determination of the carbon isotope ratios (δ¹³C) would be a good indicator for discriminating lard, chicken fat, beef fat and mutton fat. This would lead to a faster and more efficient method to ascertain the source of origin of fats used in food products.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links