Displaying publications 61 - 80 of 595 in total

Abstract:
Sort:
  1. Cheah TS, Sani RA, Chandrawathani P, Bahri S, Dahlan I
    Trop Anim Health Prod, 1999 Feb;31(1):25-31.
    PMID: 10399814
    An investigation into the epidemiology of Trypansoma evansi infection in crossbred dairy cattle was conducted for a period of 12 months on a dairy cattle farm in Penninsular Malaysia. The prevalence of parasitaemia was highest in lactating animals (13.4%), followed by those in the dry herd (8.8%), late pregnant animals (8.1%), early pregnant animals (4.7%), calves (0.3%) and heifers (0.2%). The prevalence of antigenaemia was highest in the lactating animals (54.7%), followed by that in dry animals (53.7%), heifers (51.1%), late pregnant animals (47.7%), early pregnant animals (46.5%) and calves (24.2%).
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/veterinary
  2. Shah-Majid M
    Trop Anim Health Prod, 1996 May;28(2):181-2.
    PMID: 8809982
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods*
  3. Kumar K, Arshad SS, Selvarajah GT, Abu J, Toung OP, Abba Y, et al.
    Trop Anim Health Prod, 2018 Apr;50(4):741-752.
    PMID: 29243139 DOI: 10.1007/s11250-017-1490-6
    Japanese encephalitis (JE) is vector-borne zoonotic disease which causes encephalitis in humans and horses. Clinical signs for Japanese encephalitis virus (JEV) infection are not clearly evident in the majority of affected animals. In Malaysia, information on the prevalence of JEV infection has not been established. Thus, a cross-sectional study was conducted during two periods, December 2015 to January 2016 and March to August in 2016, to determine the prevalence and risk factors in JEV infections among animals and birds in Peninsular Malaysia. Serum samples were harvested from the 416 samples which were collected from the dogs, cats, water birds, village chicken, jungle fowls, long-tailed macaques, domestic pigs, and cattle in the states of Selangor, Perak, Perlis, Kelantan, and Pahang. The serum samples were screened for JEV antibodies by commercial IgG ELISA kits. A questionnaire was also distributed to obtain information on the animals, birds, and the environmental factors of sampling areas. The results showed that dogs had the highest seropositive rate of 80% (95% CI: ± 11.69) followed by pigs at 44.4% (95% CI: ± 1.715), cattle at 32.2% (95% CI: ± 1.058), birds at 28.9% (95% CI: ± 5.757), cats at 15.6% (95% CI: ± 7.38), and monkeys at 14.3% (95% CI: ± 1.882). The study also showed that JEV seropositivity was high in young animals and in areas where mosquito vectors and migrating birds were prevalent.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/veterinary
  4. Atherstone C, Diederich S, Weingartl HM, Fischer K, Balkema-Buschmann A, Grace D, et al.
    Transbound Emerg Dis, 2019 Mar;66(2):921-928.
    PMID: 30576076 DOI: 10.1111/tbed.13105
    Hendra virus (HeV) and Nipah virus (NiV), belonging to the genus Henipavirus, are among the most pathogenic of viruses in humans. Old World fruit bats (family Pteropodidae) are the natural reservoir hosts. Molecular and serological studies found evidence of henipavirus infection in fruit bats from several African countries. However, little is known about the potential for spillover into domestic animals in East Africa, particularly pigs, which served as amplifying hosts during the first outbreak of NiV in Malaysia and Singapore. We collected sera from 661 pigs presented for slaughter in Uganda between December 2015 and October 2016. Using HeV G and NiV G indirect ELISAs, 14 pigs (2%) were seroreactive in at least one ELISA. Seroprevalence increased to 5.4% in October 2016, when pigs were 9.5 times more likely to be seroreactive than pigs sampled in December 2015 (p = 0.04). Eight of the 14 ELISA-positive samples reacted with HeV N antigen in Western blot. None of the sera neutralized HeV or NiV in plaque reduction neutralization tests. Although we did not detect neutralizing antibodies, our results suggest that pigs in Uganda are exposed to henipaviruses or henipa-like viruses. Pigs in this study were sourced from many farms throughout Uganda, suggesting multiple (albeit rare) introductions of henipaviruses into the pig population. We postulate that given the widespread distribution of Old World fruit bats in Africa, spillover of henipaviruses from fruit bats to pigs in Uganda could result in exposure of pigs at multiple locations. A higher risk of a spillover event at the end of the dry season might be explained by higher densities of bats and contact with pigs at this time of the year, exacerbated by nutritional stress in bat populations and their reproductive cycle. Future studies should prioritize determining the risk of spillover of henipaviruses from pigs to people, so that potential risks can be mitigated.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  5. Thayan R, Huat TL, See LL, Tan CP, Khairullah NS, Yusof R, et al.
    Trans R Soc Trop Med Hyg, 2009 Apr;103(4):413-9.
    PMID: 19203772 DOI: 10.1016/j.trstmh.2008.12.018
    Dengue infection is a major public health problem affecting millions of people living in tropical countries. With no suitable vaccines and specific antiviral drugs, treatment for dengue is usually symptomatic and supportive. Early diagnosis and recognition of severe disease is therefore crucial for better management of the patient. Two-dimension electrophoresis was used to identify disease-associated proteins that can be used for diagnosis and as drug targets for treatment. Two markers, identified by mass spectrometry analysis as alpha1-antitrypsin and NS1 proteins were found to be upregulated in dengue fever (DF; n=10) and dengue haemorrhagic fever (DHF; n=10) patients compared with healthy individuals (n=8). Both alpha1-antitrypsin and NS1 proteins were overexpressed two-fold in DHF patients compared with DF patients. Our study suggests that alpha1-antitrypsin and NS1 protein could be used as biomarkers as early indicators of DHF risk among patients with suspected dengue infection.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
  6. Sasidharan S, Uyub AM
    Trans R Soc Trop Med Hyg, 2009 Apr;103(4):395-8.
    PMID: 19211121 DOI: 10.1016/j.trstmh.2008.11.021
    Helicobacter pylori infection is recognized as being strongly associated with chronic gastritis, duodenal ulceration and, probably, gastric carcinoma. Seroepidemiological studies have shown that a large proportion of healthy people have antibodies against H. pylori. A serological study was conducted in asymptomatic healthy blood donors in Northern Peninsular Malaysia to assess the seropositivity for H. pylori and to investigate the relationship with ethnic group, gender, ABO blood group and age. A total of 5370 serum samples collected from 3677 male and 1693 female donors in different age groups, and who had no gastrointestinal complaints, were studied with an in-house ELISA for the presence of H. pylori IgG and IgA antibodies. Seven hundred and sixty subjects (14.2%) were seropositive. The overall seropositivity did not differ with ethnicity, gender, ABO blood group and age among asymptomatic healthy blood donors in Northern Peninsular Malaysia.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  7. Rahmah N, Lim BH, Khairul Anuar A, Shenoy RK, Kumaraswami V, Lokman Hakim S, et al.
    Trans R Soc Trop Med Hyg, 2001 8 9;95(3):280-4.
    PMID: 11490997
    An IgG4 ELISA based on a novel recombinant antigen was evaluated for detection of Brugia malayi infection, using 2487 sera from various institutions: 2031 samples from Universiti Sains Malaysia, 276 blinded sera from 2 other institutions in Malaysia, 140 blinded sera from India and 40 blinded sera from Thailand. These sera were from various groups of individuals, i.e., microfilaraemics, chronic patients, endemic normals, non-endemic normals and individuals with other parasitic and bacterial infections. Based on a cut-off optical density reading of 0.300, the IgG4 ELISA demonstrated specificity rates of 95.6-100%, sensitivity rates of 96-100%, positive predictive values of 75-100% and negative predictive values of 98.9-100%. These evaluation studies demonstrated the high specificity and sensitivity of this test for the detection of active B. malayi infection. Thus, the IgG4 ELISA would be very useful as a tool in diagnosis and in elimination programmes for brugian filariasis.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods*; Enzyme-Linked Immunosorbent Assay/standards
  8. Rahmah N, Ashikin AN, Anuar AK, Ariff RH, Abdullah B, Chan GT, et al.
    Trans R Soc Trop Med Hyg, 1998 12 16;92(4):404-6.
    PMID: 9850392
    A polymerase chain reaction assay based on the enzyme-linked immunosorbent assay (PCR-ELISA) has been developed to detect Brugia malayi infection in an area of low endemicity in Malaysia. Blood samples from 239 subjects were tested: 192 amicrofilaraemic individuals, 14 microfilaraemic persons and 3 chronic elephantiasis cases from endemic areas and 30 city-dwellers (non-endemic controls). PCR products were examined by ELISA and Southern hybridization. In the PCR-ELISA, digoxigenin-labelled PCR products were hybridized to a biotin-labelled probe. This was followed by incubation in streptavidin-coated microtitre wells and detection using anti-digoxigenin-peroxidase and ABTS [2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonic acid)]. All microfilaraemic samples were positive by PCR-ELISA and Southern hybridization and all samples from non-endemic subjects and chronic elephantiasis patients were negative. The PCR-ELISA detected 12 times as many B. malayi infections as did thick blood film examination. Nineteen of the 194 samples from the endemic area gave positive results by both PCR-ELISA and Southern hybridization, and an additional 5 samples were positive by PCR-ELISA only. The PCR-ELISA was specific and sensitive, detected more infections, and was more reproducible than Southern hybridization.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
  9. Azami NAM, Moi ML, Salleh SA, Neoh HM, Kamaruddin MA, Jalal NA, et al.
    Trans R Soc Trop Med Hyg, 2020 11 06;114(11):798-811.
    PMID: 32735681 DOI: 10.1093/trstmh/traa056
    BACKGROUND: A periodic serosurvey of dengue seroprevalence is vital to determine the prevalence of dengue in countries where this disease is endemic. This study aimed to determine the prevalence of dengue immunoglobulin G (IgG) seropositivity among healthy Malaysian adults living in urban and rural areas.

    METHODS: A total of 2598 serum samples (1417 urban samples, 1181 rural samples) were randomly collected from adults ages 35-74 y. The presence of the dengue IgG antibody and neutralising antibodies to dengue virus (DENV) 1-4 was determined using enzyme-linked immunosorbent assay and the plaque reduction neutralisation test assay, respectively.

    RESULTS: The prevalence of dengue IgG seropositivity was 85.39% in urban areas and 83.48% in rural areas. The seropositivity increased with every 10-y increase in age. Ethnicity was associated with dengue seropositivity in urban areas but not in rural areas. The factors associated with dengue seropositivity were sex and working outdoors. In dengue IgG-positive serum samples, 98.39% of the samples had neutralising antibodies against DENV3, but only 70.97% of them had neutralising antibodies against DENV4.

    CONCLUSION: The high seroprevalence of dengue found in urban and rural areas suggests that both urban and rural communities are vital for establishing and sustaining DENV transmission in Malaysia.

    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  10. Azri FA, Sukor R, Selamat J, Abu Bakar F, Yusof NA, Hajian R
    Toxins (Basel), 2018 May 11;10(5).
    PMID: 29751668 DOI: 10.3390/toxins10050196
    Mycotoxins are the secondary toxic metabolites produced naturally by fungi. Analysis of mycotoxins is essential to minimize the consumption of contaminated food and feed. In this present work, an ultrasensitive electrochemical immunosensor for the detection of aflatoxin B₁ (AFB₁) was successfully developed based on an indirect competitive enzyme-linked immunosorbent assay (ELISA). Various parameters of ELISA, including antigen⁻antibody concentration, blocking agents, incubation time, temperature and pH of reagents, were first optimized in a 96-well microtiter plate to study the antigen⁻antibody interaction and optimize the optimum parameters of the assay. The optimized assay was transferred onto the multi-walled carbon nanotubes/chitosan/screen-printed carbon electrode (MWCNTs/CS/SPCE) by covalent attachment with the aid of 1-Ethyl-3-(3-dimetylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Competition occurred between aflatoxin B₁-bovine serum albumin (AFB₁⁻BSA) and free AFB₁ (in peanut sample and standard) for the binding site of a fixed amount of anti-AFB₁ antibody. Differential pulse voltammetry (DPV) analysis was used for the detection based on the reduction peak of TMB(ox). The developed immunosensor showed a linear range of 0.0001 to 10 ng/mL with detection limit of 0.3 pg/mL. AFB₁ analysis in spiked peanut samples resulted in recoveries between 80% and 127%. The precision of the developed immunosensor was evaluated by RSD values (n = 5) as 4.78% and 2.71% for reproducibility and repeatability, respectively.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  11. Tan CH, Liew JL, Tan NH, Ismail AK, Maharani T, Khomvilai S, et al.
    Toxicon, 2017 Dec 15;140:32-37.
    PMID: 29051104 DOI: 10.1016/j.toxicon.2017.10.014
    Arboreal pit vipers of the Trimeresurus complex group are medically important species in Indonesia (west of Wallace's line), but there is no specific antivenom produced in the country for treating related envenomation. Instead, the exiting trivalent Indonesian antivenom, Biosave® Serum Anti Bisa Ular (SABU, indicated for envenoming by Malayan pit viper, Javan spitting cobra and banded krait) is often misused to treat Trimeresus envenoming resulting in poor therapeutic outcome. Here, we investigated the cross-reactivity and neutralization capability of Thai Green Pit Viper Antivenom (GPVAV) against the venoms of four Indonesian Trimeresurus species. Consistently, the venoms of Trimeresurus (Trimeresurus) insularis, Trimeresurus (Trimeresurus) purpureomaculatus, Trimeresurus (Parias) hageni and Trimeresurus (Craspedocephalus) puniceus of Indonesia showed stronger immunoreactivity on ELISA to GPVAV than to Biosave®. The findings correlated with in vivo neutralization results, whereby GPVAV was far more effective than Biosave® in cross-neutralizing the lethality of the venoms by a potency of at least 13 to 80 times higher. The efficacy of GPVAV is partly attributable to its cross-neutralization of the procoagulant effect of the venoms, thereby mitigating the progression of venom-induced consumptive coagulopathy. The paraspecific effectiveness of GPVAV against Trimeresurus species envenoming in Indonesia await further clinical investigation.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  12. Yap WY, Tan KJSX, Hwang JS
    Toxicon, 2019 Dec;170:10-20.
    PMID: 31513812 DOI: 10.1016/j.toxicon.2019.09.007
    Hydra actinoporin-like toxin 1 (HALT-1) was previously shown to cause cytolysis and haemolysis in a number of human cells and has similar functional properties to the actinoporins equinatoxin and sticholysin. In addition to HALT-1, five other HALTs (HALTs 2, 3, 4, 6 and 7) were also isolated from Hydra magnipapillata and expressed as recombinant proteins in this study. We demonstrated that recombinant HALTs have cytolytic activity on HeLa cells but each exhibited a different range of toxicity. All six recombinant HALTs bound to sulfatide, while rHALT-1 and rHALT-3 bound to two additional sphingolipids, lysophosphatidic acid and sphingosine-1-phosphate as indicated by the protein-lipid overlay assay. When either tryptophan133 or tyrosine129 of HALT-1 was mutated, the mutant protein lost binding to sulfatide, lysophosphatidic acid and sphingosine-1-phosphate. As further verification of HALTs' binding to sulfatide, we performed ELISA for each HALT. To determine the cell-type specific gene expression of seven HALTs in Hydra, we searched for individual HALT expression in the single-cell RNA-seq data set of Single Cell Portal. The results showed that HALT-1, 4 and 7 were expressed in differentiating stenoteles. HALT-1 and HALT-6 were expressed in the female germline during oogenesis. HALT-2 was strongly expressed in the gland and mucous cells in the endoderm. Information on HALT-3 and HALT-5 could not be found in the single-cell data set. Our findings show that subfunctionalisation of gene expression following duplication enabled HALTs to become specialized in various cell types of the interstitial cell lineage.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  13. Lingam TMC, Tan KY, Tan CH
    Toxicon, 2019 Oct;168:95-97.
    PMID: 31254600 DOI: 10.1016/j.toxicon.2019.06.227
    Daboia siamensis monovalent antivenom (DSMAV, Thailand) exhibited comparable immunoreactivity toward the venoms of eastern Russell's vipers from Thailand and Indonesia. It also effectively neutralized the procoagulant and lethal effects of both venoms, showing high potency. The Indonesian heterologous trivalent antivenom SABU (Serum Anti Bisa Ular), however, has very weak immunoreactivity and it failed to neutralize the Russell's viper venoms. DSMAV appears to be the appropriate choice of antivenom to treat Russell's viper envenoming.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  14. Tan CH, Sim SM, Gnanathasan CA, Fung SY, Tan NH
    Toxicon, 2014 Mar;79:37-44.
    PMID: 24412778 DOI: 10.1016/j.toxicon.2013.12.011
    The knowledge of venom pharmacokinetics is essential to improve the understanding of envenomation pathophysiology. Using a double-sandwich ELISA, this study investigated the pharmacokinetics of the venom of hump-nosed pit viper (Hypnale hypnale) following intravenous and intramuscular injections into rabbits. The pharmacokinetics of the venom injected intravenously fitted a three-compartment model. There is a rapid (t1/2π = 0.4 h) and a slow (t1/2α = 0.8 h) distribution phase, followed by a long elimination phase (t1/2β = 19.3 h) with a systemic clearance of 6.8 mL h(-1) kg(-1), consistent with the prolonged abnormal hemostasis reported in H. hypnale envenomation. On intramuscular route, multiple peak concentrations observed in the beginning implied a more complex venom absorption and/or distribution pattern. The terminal half-life, volume of distribution by area and systemic clearance of the venom injected intramuscularly were nevertheless not significantly different (p > 0.05) from that of the venom injected intravenously. The intramuscular bioavailability was exceptionally low (Fi.m. = 4%), accountable for the highly varied median lethal doses between intravenous and intramuscular envenomations in animals. The findings indicate that the intramuscular route of administration does not significantly alter the pharmacokinetics of H. hypnale venom although it significantly reduces the systemic bioavailability of the venom.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  15. Yap MK, Tan NH, Sim SM, Fung SY
    Toxicon, 2013 Jun;68:18-23.
    PMID: 23537711 DOI: 10.1016/j.toxicon.2013.02.017
    Existing protocols for antivenom treatment of snake envenomations are generally not well optimized due partly to inadequate knowledge of the toxicokinetics of venoms. The toxicokinetics of Naja sputatrix (Javan spitting cobra) venom was investigated following intravenous and intramuscular injections of the venom into rabbits using double-sandwich ELISA. The toxicokinetics of the venom injected intravenously fitted a two-compartment model. When the venom was injected intramuscularly, the serum concentration-time profile exhibited a more complex absorption and/or distribution pattern. Nevertheless, the terminal half-life, volume of distribution by area and systemic clearance of the venom injected intramuscularly were not significantly different (p > 0.05) from that of the venom injected intravenously. The systemic bioavailability of the venom antigens injected by intramuscular route was 41.7%. Our toxicokinetic finding is consistent with other reports, and may indicate that some cobra venom toxins have high affinity for the tissues at the site of injection. Our results suggest that the intramuscular route of administration doesn't significantly alter the toxicokinetics of N. sputatrix venom although it significantly reduces the systemic bioavailability of the venom.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  16. Tan NH, Yeo KH, Jaafar MI
    Toxicon, 1992 Dec;30(12):1609-20.
    PMID: 1488770
    The specificity and sensitivity of an indirect and two (an 'ordinary' and a 'rapid') double sandwich enzyme-linked immunosorbent assay (ELISA) procedures for the quantitation of Calloselasma rhodostoma (Malayan pit viper) venom were examined. The three assays were equally sensitive and the accuracy of the assays was not substantially affected by individual variation in the venom composition. The specificity of the assays was examined against 26 venoms from snakes of the families Viperidae and Elapidae. While the double sandwich ELISA procedures were sufficiently specific to be used in the clinical immunodiagnosis of C. rhodostoma bite in Malaysia, the indirect ELISA procedure exhibited extensive cross-reactivity with other Malaysian pit viper venoms. Attempts were made to improve the specificity of the indirect ELISA procedure for the quantitation of C. rhodostoma venom. A 'low ELISA cross-reactivity' venom fraction (termed VF52) was isolated from C. rhodostoma venom by repeated Sephadex G-100 gel filtration chromatography. The indirect ELISA procedure using antibodies to VF52 as immunoreagent showed an improvement in specificity. The use of the indirect ELISA procedure for the detection of C. rhodostoma antibodies was also examined and the results show that the assay was sufficiently specific to be used for retrospective diagnosis of C. rhodostoma bite in Malaysia, in particular when VF52 was used as the coating antigen.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  17. Tan NH, Ponnudurai G
    Toxicon, 1994 Oct;32(10):1265-9.
    PMID: 7846697
    Indirect ELISA shows that the antibodies to Calloselasma rhodostoma venom hemorrhagin (CR-HMG), thrombin-like enzyme (CR-TLE) and L-amino acid oxidase (CR-LAAO) exhibited strong to moderate cross-reactions with most crotalid and viperid venoms, but only anti-CR-LAAO cross-reacted with the elapid venoms. However, the indirect ELISA failed to detect some antigenic similarities demonstrable by cross-neutralization study. The double-sandwich ELISA for the three anti-C. rhodostoma venom components exhibited a much lower level of cross-reactions than the indirect ELISA.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  18. Tan NH, Lim KK, Jaafar MI
    Toxicon, 1993 Jul;31(7):865-72.
    PMID: 8212031
    The antigenic cross-reactivity of four Ophiophagus hannah (king cobra) venom components, the neurotoxin (OH-NTX), phospholipase A2 (OH-PLA2), hemorrhagin (OH-HMG) and L-amino acid oxidase (OH-LAAO) were examined by indirect and double sandwich ELISAs. The indirect ELISAs for OH-NTX, OH-PLA2 and OH-HMG were very specific when assayed against the various heterologous snake venoms and O. hannah venom components, at 25 ng/ml antigen level. At higher antigen concentrations (100-400 ng/ml), there were moderate to strong indirect ELISA cross-reactions between anti-O. hannah neurotoxin and venoms from various species of cobra as well as two short neurotoxins. However, anti-O. hannah hemorrhagin did not cross-react with any of the venoms tested, even at these high antigen concentrations, indicating that O. hannah hemorrhagin is antigenically very different from other venom hemorrhagins. Examination of the indirect ELISA cross-reactions between anti-O. hannah PLA2 and several elapid PLA2 enzymes suggests that the elapid PLA2 antigenic class has more than two subgroups. The antibodies to O. hannah L-amino acid oxidase, however, yielded indirect ELISA cross-reactions with many venoms as well as with OH-NTX, OH-PLA2 and OH-HMG, indicating that OH-LAAO shares common epitopes even with unrelated proteins. The double sandwich ELISAs for the four anti-O. hannah venom components, on the other hand, generally exhibited a higher degree of selectivity than the indirect ELISA procedure.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  19. Hawgood BJ
    Toxicon, 1998 Mar;36(3):431-46.
    PMID: 9637363
    Alistair Reid was an outstanding clinician, epidemiologist and scientist. At the Penang General Hospital, Malaya, his careful observation of sea snake poisoning revealed that sea snake venoms were myotoxic in man leading to generalized rhabdomyolysis, and were not neurotoxic as observed in animals. In 1961, Reid founded and became the first Honorary Director of the Penang Institute of Snake and Venom Research. Effective treatment of sea snake poisoning required specific antivenom which was produced at the Commonwealth Serum Laboratories in Melbourne from Enhydrina schistosa venom supplied by the Institute. From the low frequency of envenoming following bites, Reid concluded that snakes on the defensive when biting man seldom injected much venom. He provided clinical guidelines to assess the degree of envenoming, and the correct dose of specific antivenom to be used in the treatment of snake bite in Malaya. Reid demonstrated that the non-clotting blood of patients bitten by the pit viper, Calloselasma rhodostoma [Ancistrodon rhodostoma] was due to venom-induced defibrination. From his clinical experience of these patients, Reid suggested that a defibrinating derivative of C. rhodostoma venom might have a useful role in the treatment of deep vein thrombosis. This led to Arvin (ancrod) being used clinically from 1968. After leaving Malaya in 1964, Alistair Reid joined the staff of the Liverpool School of Tropical Medicine, as Senior Lecturer. Enzyme-linked immunosorbent assay (ELISA) for detecting and quantifying snake venom and venom-antibody was developed at the Liverpool Venom Research Unit: this proved useful in the diagnosis of snake bite, in epidemiological studies of envenoming patterns, and in screening of antivenom potency. In 1977, Dr H. Alistair Reid became Head of the WHO Collaborative Centre for the Control of Antivenoms based at Liverpool.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/history
  20. Lim BN, Chin CF, Choong YS, Ismail A, Lim TS
    Toxicon, 2016 Jul;117:94-101.
    PMID: 27090555 DOI: 10.1016/j.toxicon.2016.04.032
    Antibody phage display is a useful tool for the isolation and identification of monoclonal antibodies. Naive antibody libraries are able to overcome the limitations associated with the traditional hybridoma method for monoclonal antibody generation. Antibody phage display is also a preferred method for antibody generation against toxins as it does not suffer from toxicity mediated complications. Here, we describe a naïve multi ethnic scFv antibody library generated via two-step cloning with an estimated diversity of 2 × 10(9). The antibody library was used to screen for monoclonal antibodies against Hemolysin E antigen, a pore forming toxin produced by Salmonella enterica serovar Typhi. A soluble monoclonal scFv antibody against the HlyE toxin (IgM scFv D7 anti-hlyE) was isolated from the library. This shows the value of the naïve library to generate antibodies against toxin targets in addition to the potential use of the library to isolate antibodies against other immunogenic targets.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links